Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Vinh Lộc TT Huế

Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Vinh Lộc TT Huế Bản PDF Thứ Tư ngày 18 tháng 12 năm 2019, trường THPT Vinh Lộc, tỉnh Thừa Thiên Huế tổ chức kỳ thi kiểm tra khảo sát chất lượng môn Toán lớp 10 giai đoạn cuối học kỳ 1 năm học 2019 – 2020. Đề thi HK1 Toán lớp 10 năm 2019 – 2020 trường THPT Vinh Lộc – TT Huế mã đề C gồm có 04 trang, đề được biên soạn theo dạng trắc nghiệm khách quan kết hợp với tự luận, trong đó phần trắc nghiệm gồm có 40 câu, chiếm 8 điểm, phần tự luận gồm 2 câu, chiếm 2 điểm, học sinh làm bài thi trong 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HK1 Toán lớp 10 năm 2019 – 2020 trường THPT Vinh Lộc – TT Huế : + Trường THPT Vinh Lộc (Thừa Thiên Huế) có ba lớp học sinh 10A, 10B, 10C gồm 128 em cùng tham gia lao động trồng cây. Mỗi em lớp 10A trồng được 3 cây bạch đàn và 4 cây bàng. Mỗi em lớp 10B trồng được 2 cây bạch đàn và 5 cây bàng. Mỗi em lớp 10C trồng được 6 cây bạch đàn. Cả ba lớp trồng được là 476 cây bạch đàn và 375 cây bàng. Hỏi mỗi lớp có bao nhiêu học sinh? A. Lớp 10A có 45 em, lớp 10B có 40 em, lớp 10C có 43 em. B. Lớp 10A có 45 em, lớp 10B có 43 em, lớp 10C có 40 em. C. Lớp 10A có 40 em, lớp 10B có 43 em, lớp 10C có 45 em. D. Lớp 10A có 43 em, lớp 10B có 40 em, lớp 10C có 45 em. [ads] + Cho vectơ ED (khác vectơ không). Chọn khẳng định đúng? A. Độ dài của đoạn thẳng ED là phương của vectơ ED. B. Độ dài của đoạn thẳng ED là giá của vectơ ED. C. Độ dài của đoạn thẳng ED là độ dài của vectơ ED. D. Độ dài của đoạn thẳng ED là hướng của vectơ ED. + Khẳng định nào sau đây là đúng? A. Tập hợp A là tập con của tập hợp B nếu mọi phần tử của A đều là phần tử của B. B. Tập hợp A là tập con của tập hợp B nếu mọi phần tử của B đều là phần tử của A. C. Tập hợp A là tập con của tập hợp B nếu có ít nhất một phần tử của A thuộc B. D. Tập hợp A là tập con của tập hợp B nếu A có số phần tử ít hơn số phần tử của B. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra học kỳ 1 Toán 10 năm 2018 - 2019 trường THPT Phan Đình Phùng - Hà Nội
Đề kiểm tra học kỳ 1 Toán 10 năm 2018 – 2019 trường THPT Phan Đình Phùng – Hà Nội mã đề 864 gồm 3 trang với 15 câu hỏi trắc nghiệm khách quan (chiếm 3 điểm) và 4 bài toán tự luận (chiếm 7 điểm), thời gian làm bài 90 phút, kỳ thi được diễn ra vào ngày 13 tháng 12 năm 2018. Trích dẫn đề kiểm tra học kỳ 1 Toán 10 năm 2018 – 2019 trường THPT Phan Đình Phùng – Hà Nội : + Trong các mệnh đề sau, mệnh đề nào đúng? A. Với mọi số nguyên n, nếu n là số lẻ thì n^2 +1 cũng là số lẻ. B. Với mọi số nguyên n, nếu n là số lẻ thì n^2 cũng là số lẻ. C. Với mọi số nguyên n, nếu n là số lẻ thì 3n – 1 cũng là số lẻ. D. Với mọi số nguyên n, nếu n là số lẻ thì 3n + 1 cũng là số lẻ. [ads] + Cho hàm số y = f(x) có tập xác định là [-3;3] và có đồ thị được biểu diễn bởi hình bên. Khẳng định nào sau đây là đúng? A. Hàm số y = f(x) + 2018 đồng biến trên các khoảng (-3;-1) và (1;3). B. Hàm số y = f(x) + 2018 đồng biến trên các khoảng (-2;1) và (1;3). C. Hàm số y = f(x) + 2018 nghịch biến trên các khoảng (-2;-1) và (0;1). D. Hàm số y = f(x) + 2018 nghịch biến trên khoảng (-3;-2). + Trong mặt phẳng với hệ trục tọa độ Oxy, cho ba điểm A(2;3), B(3;4) và C(3;-1). a/ Chứng minh A, B, C là 3 đỉnh của 1 tam giác. b/ Xác định tọa độ trực tâm H của tam giác ABC. c/ Tìm tọa độ điểm M trên đường phân giác của góc phần tư thứ nhất sao cho biểu thức P = MA^2 + MB^2 + MC^2 đạt giá trị nhỏ nhất.
Đề kiểm tra học kỳ 1 Toán 10 năm 2018 - 2019 trường M.V Lômônôxốp - Hà Nội
Đề kiểm tra học kỳ 1 Toán 10 năm 2018 – 2019 trường M.V Lômônôxốp – Hà Nội mã đề 131 được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, trong đó phần trắc nghiệm khách quan gồm 24 câu, chiếm 60% số điểm, phần tự luận gồm 4 câu, chiếm 40% số điểm, đề nhằm giúp nhà trường và giáo viên đánh giá tổng quát lại các kiến thức Toán 10 mà học sinh đã được học trong giai đoạn học kỳ 1 năm học 2018 – 2019, để làm tiền đề cho việc đánh giá và xếp loại học lực. Trích dẫn đề kiểm tra học kỳ 1 Toán 10 năm 2018 – 2019 trường M.V Lômônôxốp – Hà Nội : + Một cửa hàng bán đồng hồ. Ngày thứ nhất cửa hàng bán được tổng cộng 50 chiếc đồng hồ gồm cả đồng hồ nam và đồng hồ nữ. Ngày thứ 2 cửa hàng có khuyến mại giảm giá nên số đồng hồ nam bán được tăng 40%, số đồng hồ nữ bán được tăng 20% so với ngày thứ nhất và tổng số đồng hồ bán được ngày thứ hai là 67 chiếc. Hỏi trong ngày thứ nhất cửa hàng bán được số đồng hồ nam, đồng hồ nữ lần lượt là bao nhiêu? [ads] + Cho tam giác ABC có A(-2;1), B(1;-1), C(2;3). a) Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành. b) Tìm tọa độ trực tâm H của tam giác ABC. + Mệnh đề phủ định của mệnh đề “∃n ∈ N, n^2 + 1 chia hết cho 5”. A. “∀n ∈ N, n^2 + 1 không chia hết cho 5”. B. “∀n ∈ N, n^2 + 1 chia hết cho 5”. C. “∃n ∈ N, n^2 + 1 không chia hết cho 5”. D. “∀n ∉ N, n^2 + 1 không chia hết cho 5”.
Đề kiểm tra học kỳ 1 Toán 10 năm 2018 - 2019 trường THPT Bùi Thị Xuân - TP. HCM
Đề kiểm tra học kỳ 1 Toán 10 năm 2018 – 2019 trường THPT Bùi Thị Xuân – TP. HCM gồm 1 trang được biên soạn theo hình thức tự luận với 5 bài toán, học sinh làm bài trong 90 phút, kỳ thi được diễn ra vào thứ Tư, ngày 12/12/2018 nhằm đánh giá tổng quát các kiến thức môn Toán lớp 10 mà học sinh đã được học trong giai đoạn học kỳ 1 vừa qua, để làm cơ sở cho việc đánh giá, xếp loại học lực.
Đề kiểm tra định kỳ Toán 10 năm học 2018 - 2019 trường THPT Cầu Giấy - Hà Nội
Đề kiểm tra định kỳ Toán 10 năm học 2018 – 2019 trường THPT Cầu Giấy – Hà Nội mã đề 486 gồm 4 trang với 25 câu hỏi trắc nghiệm khách quan và 4 bài toán tự luận thuộc các chủ đề Toán 10 giai đoạn học kỳ 1, học sinh làm bài trong 90 phút (không kể thời gian phát đề). Trích dẫn đề kiểm tra định kỳ Toán 10 năm học 2018 – 2019 trường THPT Cầu Giấy – Hà Nội : + Trong mặt phẳng tọa độ Oxy, cho hai điểm A(-2;4) và B(8;4). Tìm tọa độ điểm M thỏa mãn MA – 2MB = 0. Tìm tọa độ điểm C thuộc trục hoành sao cho tam giác ABC vuông tại C. + Cho tam giác ABC và điểm M tùy ý. Với vị trí nào của điểm M thì tổng MA^2 + MB^2 + MC^2 đạt giá trị nhỏ nhất. + Cho phương trình (1) với m là tham số: mx^2 + 2x + 1 = 0. Chỉ ra khẳng định sai trong những khẳng định sau: A. Khi m = 1 hoặc m = 0 phương trình (1) có nghiệm. B. Khi m = 1 phương trình (1) vô nghiệm. C. Khi m = 1 và m = 0 phương trình (1) có hai nghiệm phân biệt. D. Khi m = 0 phương trình (1) có hai nghiệm.