Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi Olympic Toán 9 năm 2023 - 2024 trường chuyên Lam Sơn - Thanh Hóa

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi Olympic các trường THCS hướng đến kỳ thi học sinh giỏi môn Toán 9 năm học 2023 – 2024 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 05 tháng 11 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 9 năm 2023 – 2024 trường chuyên Lam Sơn – Thanh Hóa : + Cho A là số nguyên dương và phương trình nghiệm nguyên ax by c với các hệ số nguyên a b c thỏa mãn a b nguyên tố cùng nhau a b A. Chứng minh số nghiệm nguyên x y thỏa mãn điều kiện x A y A của phương trình đã cho không vượt quá 3A b. + Gọi O là giao điểm ba đường phân giác trong của tam giác ABC. Đường thẳng qua O và vuông góc với CO cắt CA tại M cắt CB tại N. Chứng minh rằng: a) Tam giác AOM đồng dạng với tam giác OBN. b) 2 1 AM BN OC AC BC AC BC. + Cạnh BC của tam giác ABC tiếp xúc với đường tròn nội tiếp O của tam giác đó tại điểm D. Chứng minh rằng tâm O của đường tròn này nằm trên đường thẳng đi qua trung điểm của các đoạn thẳng BC và AD.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2020 - 2021 sở GDĐT Lào Cai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đáp án, lời giải chi tiết và hướng dẫn chấm điểm đề thi học sinh giỏi Toán 9 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Lào Cai; kỳ thi được diễn ra vào ngày 16 tháng 03 năm 2021. Trích dẫn đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Lào Cai : + Cho phương trình 2 x m x m 2 1 2 5 0 (x là ẩn và m là tham số). Tìm m để phương trình có hai nghiệm phân biệt 1 2 x x thỏa mãn 1 2 x x 2 2. + Lúc 7 giờ sáng một người đi xe đạp từ địa điểm A đến địa điểm B với khoảng cách là 18 km. Sau khi đi được 1 3 quãng đường do xe bị hỏng nên người đó phải dừng lại sửa mất 20 phút rồi đi tiếp trên đoạn đường còn lại với vận tốc kém vận tốc lúc đầu là 8 km/h. Khi đến B người đó nghỉ lại 30 phút rồi trở về A với vận tốc bằng một nửa vận tốc đi trên 1 3 quãng đường AB đầu tiên. Biết người đó trở về A lúc 10 giờ 20 phút sáng cùng ngày. Hỏi xe đạp hỏng lúc mấy giờ? + Cho tam giác ABC nhọn có AB AC. Gọi D là trung điểm của BC. Hai đường cao BE và CF cắt nhau tại H. Đường tròn tâm O ngoại tiếp BDF và đường tròn tâm O ngoại tiếp CDE cắt nhau tại I (I khác D), EF cắt BC tại K. Chứng minh: a) Tứ giác AEIF nội tiếp. b) Tam giác DCA đồng dạng với tam giác DIC. c) Ba đường thẳng BE CF KI đồng quy.
Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2020 - 2021 sở GDĐT Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đáp án, lời giải chi tiết và hướng dẫn chấm điểm đề thi học sinh giỏi Toán 9 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Bắc Giang; kỳ thi được diễn ra vào ngày 06 tháng 03 năm 2021. Trích dẫn đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Bắc Giang : + Cho tam giác ABC AB BC CA ngoại tiếp đường tròn tâm I. Lấy E và F lần lượt trên các đường thẳng AC và AB sao cho CB CE BF đồng thời chúng nằm về cùng phía với A so với đường thẳng BC. Các đường thẳng BE và CF cắt nhau tại G. a) Chứng minh rằng bốn điểm C, E, I và G cùng nằm trên một đường tròn. b) Trên đường thẳng qua G và song song với AC lấy điểm H sao cho HG AF đồng thời H nằm khác phía với C so với đường thẳng BG. Chứng minh rằng 1 2 EHG CAB. + Cho đường tròn (O;R) và hai điểm A, B cố định nằm ngoài đường tròn sao cho OA R 2. Điểm C nằm trên đoạn thẳng AO sao cho 2 R OC và điểm M thay đổi trên đường tròn. Giá trị nhỏ nhất của MA + 2MB bằng? + Cho đường tròn tâm O có bán kính OA R, dây cung BC vuông góc với OA tại trung điểm M của đoạn thẳng OA, kẻ tiếp tuyến với đường tròn tại B, tiếp tuyến đó cắt OA tại E. Độ dài đoạn thẳng BE là?
Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2020 - 2021 sở GDĐT Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đáp án, lời giải chi tiết và hướng dẫn chấm điểm đề thi học sinh giỏi Toán 9 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Bắc Ninh. Trích dẫn đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Bắc Ninh : + Cho 19 điểm trong đó không có 3 điểm nào thẳng hàng nằm trong một hình lục giác đều có cạnh bằng 1. Chứng minh rằng luôn tồn tại một tam giác có ít nhất một góc không lớn hơn 450 và nằm trong đường tròn có bán kính nhỏ hơn 3/5. + Cho tam giác ABC vuông tại A AB AC ngoại tiếp đường tròn tâm O. Gọi DEF lần lượt là tiếp điểm của (O) với các cạnh AB AC BC. Đường thẳng BO cắt các đường thẳng EF DF lần lượt tại I K. 1. Tính số đo góc BIF. 2. Giả sử M là điểm di chuyển trên đoạn CE. a. Khi AM = AB, gọi H là giao điểm của BM và EF. Chứng minh rằng ba điểm A O H thẳng hàng. b. Gọi N là giao điểm của đường thẳng BM với cung nhỏ EF của (O); P Q lần lượt là hình chiếu của N trên các đường thẳng DE và DF. Xác định vị trí điểm M để độ dài đoạn thẳng PQ lớn nhất. + Cho phương trình: 2 2 x mx m m 2 6 0 (m là tham số). 1. Tìm m để phương trình có hai nghiệm. 2. Với giá trị nào của m thì phương trình có hai nghiệm 1 x và 2 x sao cho 1 2 x x 8.
Đề thi học sinh giỏi Toán THCS cấp tỉnh năm 2020 - 2021 sở GDĐT Sơn La
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán THCS cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Sơn La; kỳ thi được diễn ra vào ngày 14 tháng 03 năm 2021; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán THCS cấp tỉnh năm 2020 – 2021 sở GD&ĐT Sơn La : + Cho tam giác ABC có góc A tù. Vẽ đường tròn O đường kính AB và đường tròn O’ đường kính AC. Đường thẳng AB cắt đường tròn O’ tại điểm thứ hai là D, đường thẳng AC cắt đường tròn O tại điểm thứ hai là E. a) Chứng minh bốn điểm B C D E cùng nằm trên một đường tròn. b) Gọi F là giao điểm thứ hai của hai đường tròn O và O’ (F khác A). Chứng minh ba điểm B F C thẳng hàng và FA là phân giác của góc EFD. c) Gọi H là giao điểm của AB và EF. Chứng minh BH AD AH BD. + Trong mặt phẳng tọa độ Oxy, cho đường thẳng d y m x m 2 1 2 và parabol P: 2 y x (m là tham số). a) Tìm tọa độ các giao điểm của d và P khi m 2. b) Tìm m để d và P cắt nhau tại hai điểm phân biệt có hoành độ 1 2 x x sao cho biểu thức 2 2 E x x x x 1 2 1 2 đạt giá trị nhỏ nhất. + Cho 3 số thực dương a b c thỏa mãn 2 2 2 1 1 1 1 a b c. Tìm giá trị nhỏ nhất của biểu thức 2 2 2 2 2 2 2 2 2 2 2 2 b c c a a b P.