Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng môn Toán 10 học kì 1 - Nguyễn Công Hạnh

Tài liệu gồm 290 trang, được biên soạn bởi thầy giáo Nguyễn Công Hạnh (trường THPT chuyên Nguyễn Du, tỉnh Đắk Lắk), bao gồm lý thuyết bài giảng, làm quen nhau, món quà tại lớp, bí mật về nhà và thủ thuật trắc nghiệm các chuyên đề môn Toán 10 học kì 1, kết hợp 3 bộ sách giáo khoa Toán 10 chương trình GDPT 2018: Cánh Diều, Chân Trời Sáng Tạo, Kết Nối Tri Thức Với Cuộc Sống. CHUYÊN ĐỀ 1 . MỆNH ĐỀ – TẬP HỢP. Bài 1. Mệnh đề toán học. Bài 2. Tập hợp – phép toán trên tập hợp. + Bài giảng 1. Các phép toán trên tập hợp. + Bài giảng 2. Phép toán trên tập hợp số. + Bài giảng 3. Khám phá sơ đồ Ven. CHUYÊN ĐỀ 2 . BẤT PHƯƠNG TRÌNH VÀ HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN. Bài 1. Bất phương trình bậc nhất hai ẩn. Bài 2. Hệ bất phương trình bậc nhất hai ẩn. + Bài giảng 1. Hệ bất phương trình bậc nhất hai ẩn. + Bài giảng 2. Vẻ đẹp của hệ bất phương trình bậc nhất hai ẩn trong toán thực tế. CHUYÊN ĐỀ 3 . HÀM SỐ VÀ ĐỒ THỊ. Bài 1. Đại cương hàm số. + Bài giảng 1. Tập xác định và tập giá trị của hàm số. + Bài giảng 2. Sự biến thiên của hàm số. Bài 2. Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng. + Bài giảng 1. Khảo sát sự biến thiên và vẽ đồ thị. + Bài giảng 2. Xác định hàm bậc hai và bài toán thực tế. Bài 3. Dấu của tam thức bậc hai – bất phương trình bậc hai một ẩn. + Bài giảng 1. Dấu của tam thức bậc hai – bất phương trình bậc hai. + Bài giảng 2. Phương trình – bất phương trình bậc hai chứa tham số. + Bài giảng 3. Điều kì diệu của bất phương trình bậc hai trong toán thực tế. Bài 4. Phương trình quy về phương trình bậc hai một ẩn. CHUYÊN ĐỀ 4 . THỐNG KÊ. Bài 1. Số gần đúng và sai số. Bài 2. Các số đặc trưng đo xu thế trung tâm. Bài 3. Các số đặc trưng đo xu thế phân tán. CHUYÊN ĐỀ 5 . HỆ THỨC LƯỢNG TRONG TAM GIÁC. Bài 1. Giá trị lượng giác của góc từ 0 – 180. Định lý sin – cosin. Bài 2. Định lý hàm số sin và cosin. + Bài giảng 1. Tìm yếu tố trong tam giác. + Bài giảng 2. Vẻ đẹp của giải tam giác trong toán thực tế. CHUYÊN ĐỀ 6 . VÉCTƠ. Bài 1. Khái niệm véctơ. Tổng và hiệu vectơ. + Bài giảng 1. Khái niệm véctơ. + Bài giảng 2. Tổng hiệu véctơ. + Bài giảng 3. Độ dài của véctơ. Bài 2. Tích một số với một véctơ. + Bài giảng 1. Chứng minh đẳng thức véctơ – độ dài véctơ. + Bài giảng 2. Phân tích véctơ. + Bài giảng 3. Tìm điểm thỏa mãn đẳng thức véctơ. + Bài giảng 4. Tìm quỹ tích véctơ. + Bài giảng 5. Chứng minh thẳng hàng – đồng quy. Bài 3. Tích vô hướng của hai véctơ. + Bài giảng 1. Tính tích vô hướng và góc giữa hai véctơ. + Bài giảng 2. Chứng minh đẳng thức – chứng minh vuông góc. + Bài giảng 3. Độ dài và bài toán thực tế. Bài 4. Mở đầu về tọa độ. + Bài giảng 1. Tọa độ điểm – véctơ. + Bài giảng 2. Biểu thức tọa độ của tích vô hướng. + Bài giảng 3. Tìm tọa độ điểm đặc biệt.

Nguồn: toanmath.com

Đọc Sách

Hướng dẫn ôn tập học kì 1 Toán 10 năm 2021 - 2022 trường THPT Thạch Bàn - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 tài liệu đề cương hướng dẫn ôn tập học kì 1 môn Toán khối 10 năm học 2021 – 2022 trường THPT Thạch Bàn, quận Long Biên, thành phố Hà Nội. A. NỘI DUNG ÔN TẬP PHẦN I . ĐẠI SỐ. I. MỆNH ĐỀ – TẬP HỢP (nội dung tương tự giữa kì I). 1. Tập hợp, tập con; các tập hợp con của tập hợp số thực. 2. Các phép toán tập hợp: giao, hợp, hiệu. II. HÀM SỐ, HÀM SỐ BẬC NHẤT, BẬC HAI. 1. Tập xác định, tính chẵn lẻ của hàm số. 2. Lập bảng biến thiên, vẽ đồ thị hàm số bậc nhất, hàm số bậc hai. 3. Xác định được công thức hàm số khi biết các yếu tố liên quan. 4. Sự tương giao giữa đường thẳng và parabol. III. PHƯƠNG TRÌNH – HỆ PHƯƠNG TRÌNH. 1. Điều kiện xác định của phương trình; các phép biến đổi tương đương. 2. Giải một số phương trình (phương trình căn thức, phương trình chứa dấu giá trị tuyệt đối …) bằng cách đưa về phương trình bậc nhất, bậc hai. 3. Giải và biện luân nghiệm của phương trình bậc nhất, bậc hai. 4. Định lý Viete cho phương trình bậc hai. 5. Giải và biện luận nghiệm của hệ phương trình. IV. BẤT ĐẲNG THỨC. 1. Vận dụng định lý Cô – si để chứng minh các bất đẳng thức. PHẦN II . HÌNH HỌC. I. CÁC KHÁI NIỆM. 1. Các khái niệm về vectơ: giá, độ lớn của vectơ, hai vectơ cùng phương, cùng hướng, bằng nhau, đối nhau … (nội dung tương tự giữa học kì I). 2. Hệ trục tọa độ trong mặt phẳng. Vận dụng các kiến thức cơ bản để giải một số dạng toán thường gặp: + Chứng minh một đẳng thức vectơ. + Xác định điểm M thoả mãn một đẳng thức vec tơ cho trước. + Phân tích một vec tơ theo hai vectơ không cùng phương. + Chứng minh ba điểm thẳng hàng. + Tính độ dài của vectơ. + Tìm tọa độ vectơ, tọa độ điểm. + Chỉ ra các vectơ cùng phương, cùng hướng. II. TÍCH VÔ HƯỚNG CỦA HAI VECTƠ. 1. Góc giữa hai vectơ. 2. Tích vô hướng của hai vectơ: định nghĩa và biểu thức tọa độ. 3. Ứng dụng của tích vô hướng. B. BÀI TẬP THAM KHẢO I. BÀI TẬP TỰ LUẬN. HÀM SỐ – HÀM SỐ BẬC NHẤT – HÀM SỐ BẬC HAI. PHƯƠNG TRÌNH – HỆ PHƯƠNG TRÌNH. VECTƠ – TÍCH VÔ HƯỚNG. II. BÀI TẬP TRẮC NGHIỆM. MỨC ĐỘ NHẬN BIẾT – THÔNG HIỂU. MỨC ĐỘ VẬN DỤNG – VẬN DỤNG CAO. III. MỘT SỐ ĐỀ TỰ LUẬN THAM KHẢO. ĐỀ 1. ĐỀ 2.
Đề cương ôn thi học kì 1 Toán 10 năm 2021 - 2022 trường THPT Việt Đức - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề cương ôn thi học kì 1 Toán 10 năm 2021 – 2022 trường THPT Việt Đức – Hà Nội; đề cương hướng dẫn nội dung kiến thức cần ôn tập và một số đề thi HK1 Toán 10 tham khảo. I. Nội dung chương trình. Đại số: Hàm số bậc hai, đại cương về phương trình, phương trình bậc nhất, bậc hai và một số phương trình quy về bậc nhất, bậc hai. Hình học: Tích của một vec tơ với 1 số, trục và hệ trục tọa độ, tích vô hướng của hai vectơ. II. Cấu trúc đề. 50 câu trắc nghiệm – Thời gian làm bài: 90 phút. III. Các đề ôn tập.
Đề cương HK1 Toán 10 năm 2021 - 2022 trường Lương Ngọc Quyến - Thái Nguyên
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề cương ôn tập cuối học kỳ 1 môn Toán lớp 10 năm học 2021 – 2022 trường THPT Lương Ngọc Quyến, tỉnh Thái Nguyên. HÌNH THỨC KIỂM TRA: Kiểm tra 90 phút: Trắc nghiệm 35 câu – 7 điểm + Tự luận – 3 điểm. NỘI DUNG KIỂM TRA: A – ĐẠI SỐ 1. Mệnh đề – Tập hợp. 2. Hàm số. – Tập xác định của hàm số. – Tính đồng biến, nghịch biến của hàm số. – Hàm số chẵn, hàm số lẻ. – Đồ thị của hàm số. – Sự biến thiên và đồ thị của hàm số bậc nhất, hàm số bậc hai. – Sự biến thiên và đồ thị của hàm số bậc nhất trên từng khoảng. 3. Phương trình. – Phương trình bậc nhất và bậc hai một ẩn. + Giải và biện luận phương trình ax + b = 0. + Giải và biện luận phương trình ax2 + bx + c = 0. + Ứng dụng của Định lý Vi-et cho phương trình bậc hai. – Một số phương trình quy về phương trình bậc nhất hoặc bậc hai. + Giải phương trình chứa ẩn trong dấu giá trị tuyệt đối. + Giải phương trình chứa ẩn ở mẫu thức. + Giải phương trình chứa ẩn trong dấu căn bậc hai. + Giải phương trình bằng phương pháp đặt ẩn phụ. 4. Hệ phương trình bậc nhất, bậc hai. B – HÌNH HỌC 1. Vectơ. – Phương, hướng, độ dài của vectơ; hai vectơ bằng nhau. – Các phép toán vectơ: Tổng, hiệu của hai vectơ (quy tắc 3 điểm, quy tắc hình bình hành …). – Tích của một vectơ với một số. – Biểu diễn một vectơ theo hai vectơ không cùng phương. – Chứng minh ba điểm thẳng hàng. 2. Hệ trục tọa độ. – Tọa độ của vectơ, tọa độ của điểm đối với hệ trục tọa độ. – Chứng minh ba điểm thẳng hàng. 3. Giá trị lượng giác của một góc bất kỳ từ 0o đến 180o. 4. Tích vô hướng của hai vectơ. – Bài toán về tích vô hướng của hai vectơ. – Bài toán về biểu thức tọa độ của tích vô hướng của hai vectơ.
Hướng dẫn ôn tập học kì 1 Toán 10 năm 2021 - 2022 trường Vinschool - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 tài liệu đề cương hướng dẫn ôn tập học kì 1 Toán 10 năm 2021 – 2022 trường Vinschool – Hà Nội. I. KIẾN THỨC TRỌNG TÂM 1. Đại số: – Mệnh đề, tập hợp, các phép toán trên tập hợp. – Khái niệm hàm số, hàm số bậc nhất, bậc hai và một số vấn đề liên quan: tập xác định, tính chẵn lẻ, hàm số đồng biến, nghịch biến, đồ thị hàm số, tương giao của hai đồ thị. – Điều kiện xác định của phương trình, phương trình tương đương, phương trình hệ quả; các phép biến đổi tương đương, hệ quả. – Giải và biện luận phương trình bậc nhất, bậc hai, định lý Vi-ét và ứng dụng. – Phương trình chứa ẩn ở mẫu số, phương trình chứa dấu giá trị tuyệt đối, phương trình chứa ẩn dưới dấu căn, phương trình qui về phương trình bậc nhất, bậc hai. – Phương trình, hệ phương trình bậc nhất nhiều ẩn (khái niệm, giải hệ phương trình bậc nhất nhiều ẩn, biện luận nghiệm). – Khái niệm và các tính chất của bất đẳng thức, các phép biến đổi tương đương bất đẳng thức, một số bất đẳng thức cơ bản, bất đẳng thức Côsi và các ứng dụng. 2. Hình học: – Vectơ, tổng và hiệu của hai vectơ; quy tắc ba điểm, quy tắc hình bình hành, quy tắc trừ và các tính chất. – Định nghĩa tích vectơ với một số, các tính chất của tích vectơ với một số, điều kiện để hai vectơ cùng phương; tính chất trung điểm của một đoạn thẳng và tính chất trọng tâm của tam giác. – Tọa độ của vectơ, tọa độ của điểm. – Biểu thức tọa độ của các phép toán vectơ, độ dài vectơ và khoảng cách giữa hai điểm, tọa độ trung điểm của đoạn thẳng và tọa độ trọng tâm của tam giác. – Giá trị lượng giác của góc bất kì từ 0° đến 180°. – Tích vô hướng của hai vectơ và biểu thức tọa độ của tích vô hướng. II. BÀI TẬP TỰ LUẬN 1. Đại số. 1.1. Hàm số, hàm số bậc nhất, hàm số bậc hai. 1.2. Phương trình, hệ phương trình. 1.3. Bất đẳng thức. 2. Hình học. III. BÀI TẬP TRẮC NGHIỆM 1. Đại số. 1.1. Mệnh đề, tập hợp và các phép toán. 1.2. Hàm số, hàm số bậc nhất, hàm số bậc hai. 1.3. Phương trình, phương trình bậc nhất, phương trình bậc hai, phương trình chứa dấu giá trị tuyệt đối, phương trình chứa căn thức. 1.4. Hệ phương trình bậc nhất hai ẩn, ba ẩn. 1.5. Bất đẳng thức. 2. Hình học. 2.1. Vectơ. 2.2. Tích vô hướng của hai vectơ.