Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2018 2019 trường THPT Lý Thánh Tông Hà Nội

Nội dung Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2018 2019 trường THPT Lý Thánh Tông Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi HK2 Toán lớp 10 năm 2018 – 2019 trường THPT Lý Thánh Tông – Hà Nội, đề thi được biên soạn theo dạng đề kết hợp giữa tự luận và trắc nghiệm khách quan, vừa kiểm tra được khả năng tư duy logic, trình bày bài giải của học sinh, đồng thời phù hợp với xu hướng thi trắc nghiệm Toán hiện nay. Đề thi có mã đề 001 gồm 3 trang, phần tự luận gồm 4 câu, chiếm 6 điểm, phần trắc nghiệm gồm 20 câu, chiếm 4 điểm, tổng thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Ma trận đề thi HK2 Toán lớp 10 năm 2018 – 2019 trường THPT Lý Thánh Tông – Hà Nội: Bất phương trình và hệ bất phương trình một ẩn: + Nhận biết: Điều kiện xác định của BPT có chứa mẫu, Giải bất phương trình đơn giản. + Thông hiểu: Giải BPT đơn giản có chứa căn thức, BPT có chứa căn thức, trị tuyệt đối. + Vận dụng: Giải bất phương trình bậc nhất một ẩn, hệ bất phương trình bậc nhất một ẩn. Dấu của nhị thức bậc nhất: + Nhận biết: Nhị thức bậc nhất. + Thông hiểu: Dấu của nhị thức, Giải bất phương trình f(x) ≥ 0 với f(x) là tích, thương của các nhị thức bậc nhất. + Vận dụng: Bảng dấu, tìm nhị thức đúng. [ads] Dấu của tam thức bậc hai: + Nhận biết: Điều kiện để hàm số là một tam thức bậc hai. + Thông hiểu: Dấu của tam thức, Giải bất phương trình f(x) ≥ 0 với f(x) là tích, thương. + Vận dụng: Giải bất phương trình f(x) ≥ 0 với f(x) là tích, thương, Tìm m để phương trình có nghiệm hoặc vô nghiệm, thỏa mãn điều kiện cho trước, tam thức luôn dương hoặc luôn âm (với delta ở dạng bậc hai). Cung và góc lượng giác: + Nhận biết: Đổi độ sang rađian và ngược lại, Chuyển độ sang rađian và ngược lại, Tìm độ dài cung trên đường tròn. + Thông hiểu: Tìm độ dài cung trên đường tròn. Giá trị lượng giác của một cung: + Nhận biết: Kiểm tra công thức đúng – sai, Kiểm tra công thức lượng giác cơ bản, Kiểm tra công thức GTLG của các cung có liên quan đặc biệt. + Thông hiểu: Xác định dấu của GTLG, Tính giá trị lượng giác còn lại. + Vận dụng: GTLN và GTNN của một biểu thức, Tìm giá trị lượng giác của góc α, Chứng minh đẳng thức. Công thức lượng giác: + Nhận biết: Kiểm tra công thức. + Thông hiểu: Tính giá trị của biểu thức lượng giác, Tính giá trị của biểu thức lượng giác. + Vận dụng: Rút gọn biểu thức, Chứng minh đẳng thức lượng giác. Các hệ thức lượng trong tam giác và giải tam giác: + Nhận biết: Mệnh đề đúng – sai (định lý sin, định lý côsin), Tính diện tích tam giác sử dụng công thức Hê-rông. + Thông hiểu: Tìm bán kính đường tròn nội tiếp (ngoại tiếp). + Vận dụng: Tính số đo góc, bài toán thực tế. Phương trình đường thẳng: + Nhận biết: Xác định vectơ chỉ phương, vectơ pháp tuyến, Xác định điểm thuộc đường thẳng, Viết phương trình đường thẳng biết đi qua 1 điểm, biết VTCP hoặc VTPT. + Thông hiểu: Tính khoảng cách từ 1 điểm đến 1 đường thẳng, Viết phương trình đường thẳng đi qua 2 điểm. + Vận dụng: Viết phương trình đường thẳng, Viết phương trình đường thẳng thỏa mãn điều kiện cho trước. Phương trình đường tròn: + Nhận biết: Xác định tọa độ tâm và bán kính đường tròn, Viết phương trình đường tròn biết tâm và bán kính. + Thông hiểu: Phương trình đường tròn đường kính AB. + Vận dụng: Điều kiện để một phương trình trở thành phương trình đường tròn, Viết phương trình đường tròn, Viết phương trình đường tròn thỏa mãn điều kiện cho trước. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề học kì 2 Toán 10 năm 2023 - 2024 trường THPT Chu Văn An - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kì 2 môn Toán 10 THPT năm học 2023 – 2024 trường THPT Chu Văn An, thành phố Hà Nội. Đề thi được biên soạn theo định dạng trắc nghiệm mới nhất, với cấu trúc gồm 03 phần: Câu trắc nghiệm nhiều phương án lựa chọn; Câu trắc nghiệm đúng sai; Câu trắc nghiệm trả lời ngắn. Kỳ thi được diễn ra vào ngày 26 tháng 04 năm 2024.
Đề cuối kỳ 2 Toán 10 chuyên năm 2023 - 2024 trường chuyên Hùng Vương - Phú Thọ
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kỳ 2 môn Toán 10 (chương trình chuyên) năm học 2023 – 2024 trường THPT chuyên Hùng Vương, tỉnh Phú Thọ. Đề thi gồm 04 phần: Câu trắc nghiệm nhiều phương án lựa chọn; Câu trắc nghiệm đúng sai; Câu trắc nghiệm trả lời ngắn; Tự luận. Kỳ thi được diễn ra vào ngày 24 tháng 04 năm 2024. Đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề cuối kỳ 2 Toán 10 chuyên năm 2023 – 2024 trường chuyên Hùng Vương – Phú Thọ : + Hai trạm phát tín hiệu vô tuyến đặt tại hai vị trí A B cách nhau 200 km. Tại cùng một thời điểm, hai trạm cùng phát tín hiệu với vận tốc 292000 km s để hai tàu thủy đang ở hai vị trí C D, thu và đo độ lệch thời gian. Với tàu thủy tại vị trí C, tín hiệu từ A đến sớm hơn tín hiệu từ B là 0,0005s. Với tàu thủy tại vị trí D, tín hiệu từ B đến sớm hơn tín hiệu từ A là 0,0005s. Tính hiệu khoảng cách từ tàu ở vị trí D đến hai trạm phát tín hiệu A và B từ đó tính khoảng cách từ tàu ở vị trí D đến trạm tín hiệu tại A biết hai tàu cách nhau 300km và CD song song với AB. + Đội thanh niên xung kích của một trường trung học phổ thông có 12 học sinh trong đó có 9 học sinh nam và 3 học sinh nữ. Đoàn trường cần chọn một nhóm 5 học sinh đi làm nhiệm vụ sao cho phải có 1 đội trưởng nam, 1 đội phó nam và có ít nhất 1 nữ. Hỏi có bao nhiêu cách chọn? + Một cánh cổng hình bán nguyệt rộng 8, 4 m và cao 4,2 m. Mặt đường dưới cổng được chia thành hai làn đều nhau cho xe ra vào. Một chiếc xe tải rộng 2,8 m không chở hàng nếu đi đúng làn đường quy định và có thể đi qua cổng mà không làm hư cổng thì chiều cao của xe không vượt quá bao nhiêu mét (làm tròn đến hàng phần trăm)?
Đề cuối kỳ 2 Toán 10 năm 2023 - 2024 trường THPT chuyên Hùng Vương - Phú Thọ
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kỳ 2 môn Toán 10 (chương trình không chuyên) năm học 2023 – 2024 trường THPT chuyên Hùng Vương, tỉnh Phú Thọ. Đề thi gồm 04 phần: Câu trắc nghiệm nhiều phương án lựa chọn; Câu trắc nghiệm đúng sai; Câu trắc nghiệm trả lời ngắn; Tự luận. Kỳ thi được diễn ra vào ngày 24 tháng 04 năm 2024. Đề thi có đáp án và hướng dẫn chấm điểm mã đề 109 110 111 112. Trích dẫn Đề cuối kỳ 2 Toán 10 năm 2023 – 2024 trường THPT chuyên Hùng Vương – Phú Thọ : + Hai trạm phát tín hiệu vô tuyến đặt tại hai vị trí A B cách nhau 200 km. Tại cùng một thời điểm, hai trạm cùng phát tín hiệu với vận tốc 292 000 km/s để hai tàu thủy đang ở hai vị trí C D thu và đo độ lệch thời gian. Với tàu thủy tại vị trí C, tín hiệu từ A đến sớm hơn tín hiệu từ B là 0,0005 s. Với tàu thủy tại vị trí D, tín hiệu từ B đến sớm hơn tín hiệu từ A là 0,0005 s. Tính hiệu khoảng cách từ tàu ở vị trí D đến hai trạm phát tín hiệu A và B từ đó tính khoảng cách từ tàu ở vị trí D đến trạm tín hiệu tại A biết hai tàu cách nhau 300 km và CD song song với AB (làm tròn đến hàng đơn vị). + Một hiệu sách có 3 loại sách tham khảo môn Toán lớp 11, 2 loại sách tham khảo môn Văn lớp 11 và 2 loại sách tham khảo môn Anh lớp 11. Bạn An vào hiệu sách này muốn chọn một loại sách tham khảo kể trên để mua làm quà tặng sinh nhật bạn Bình. Vẽ sơ đồ cây minh họa và cho biết An có bao nhiêu cách chọn một loại sách tham khảo? + Một cánh cổng hình bán nguyệt rộng 8,4 m và cao 4,2 m. Mặt đường dưới cổng được chia thành hai làn đều nhau cho xe ra vào. Một chiếc xe tải rộng 2,8 m không chở hàng nếu đi đúng làn đường quy định và có thể đi qua cổng mà không làm hư cổng thì chiều cao của xe không vượt quá bao nhiêu mét (làm tròn đến hàng phần trăm)?
Đề minh họa HK2 Toán 10 năm 2023 - 2024 trường Lương Ngọc Quyến - Thái Nguyên
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề minh họa kiểm tra cuối học kỳ 2 môn Toán 10 năm học 2023 – 2024 trường THPT Lương Ngọc Quyến, tỉnh Thái Nguyên. Ma trận Đề minh họa HK2 Toán 10 năm 2023 – 2024 trường Lương Ngọc Quyến – Thái Nguyên : 1. Hàm số, đồ thị và ứng dụng. 1.1. Hàm số. 1.2. Hàm số bậc hai. 1.3. Dấu của tam thức bậc hai. 1.4. Phương trình quy về phương trình bậc hai. 2. Đại số tổ hợp. 2.1. Quy tắc đếm. 2.2. Hoán vị, chỉnh hợp và tổ hợp. 2.3. Nhị thức Newton. 3. Tính xác suất theo định nghĩa cổ điển. 3.1. Biến cố và định nghĩa cổ điển của xác suất. 3.2. Thực hành tính xác suất theo định nghĩa cổ điển. 4. Phương pháp tọa độ trong mặt phẳng. 4.1. Phương trình đường thẳng. 4.2. Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách. 4.3. Đường tròn trong mặt phẳng tọa độ. 4.4. Ba đường Cônic.