Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Quảng Nam

Nội dung Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Quảng Nam Bản PDF - Nội dung bài viết Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 Sở GD&ĐT Quảng Nam Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 Sở GD&ĐT Quảng Nam Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2022 - 2023 của Sở Giáo dục và Đào tạo tỉnh Quảng Nam. Kỳ thi sẽ diễn ra vào ngày 19 tháng 04 năm 2023. Tóm tắt nội dung đề thi: Cho tam giác ABC nhọn (AB < AC) có hai đường cao BE và CF, M là trung điểm của BC. Hạ MN vuông góc với EF tại N, hai đường thẳng MN và AB cắt nhau tại D. a) Chứng minh N là trung điểm của EF và DEF = MEC. b) Gọi K là giao điểm của hai đường thẳng AM và EF, L là giao điểm của hai đường thẳng AN và BC. Chứng minh KL vuông góc với BC. Cho tam giác ABC nhọn (AB < AC) nội tiếp trong đường tròn (O), đường phân giác trong AD (D thuộc BC) cắt đường tròn (O) tại E (E khác A). Hạ BH vuông góc với AE tại H, đường thẳng BH cắt đường tròn (O) tại F (F khác B). Đường thẳng EF cắt hai đuờng thẳng AC, BC lần lượt tại K, M; hai đường thẳng OE và HK cắt nhau tại L. a) Chứng minh tứ giác AHKF nội tiếp trong đường tròn. b) Chứng minh HB.LE = HE.LK. c) Hai tiếp tuyến của đường tròn ngoại tiếp tam giác ADM tại A, M cắt nhau tại Q; tiếp tuyến của đường tròn (O) tại A cắt đường thẳng BC tại P. Chứng minh PQ song song với AD. Tìm tất cả các cặp số nguyên tố (p;q) thỏa mãn: p2 − 1 chia hết cho q và q2 – 4 chia hết cho p.

Nguồn: sytu.vn

Đọc Sách

Đề chọn đội tuyển thi HSG tỉnh Toán 9 năm 2022 - 2023 phòng GDĐT Tân Kỳ - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển dự thi học sinh giỏi cấp tỉnh môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Tân Kỳ, tỉnh Nghệ An; kỳ thi được diễn ra vào ngày 25 tháng 10 năm 2022. Trích dẫn Đề chọn đội tuyển thi HSG tỉnh Toán 9 năm 2022 – 2023 phòng GD&ĐT Tân Kỳ – Nghệ An : + Cho x, y là các số nguyên thỏa mãn 2×2 + x = 3y2 + y. Chứng minh x − y; 2x + 2y + 1 và 3x + 3y + 1 đều là các số chính phương. + Cho hình vuông ABCD. Điểm M thuộc cạnh AC, kẻ MH vuông góc với AB (H thuộc AB). Kẻ MK vuông góc với BC (K thuộc BC). O là trung điểm của AM. a) Chứng minh: HBO đồng dạng MCH b) Chứng minh: BO/CH c) Xác định vị trí của M trên AC để diện tích ADHK đạt giá trị nhỏ nhất. + Cho x; y là các số thực dương thỏa mãn (x + 1)(y + 1) = 4xy. Chứng minh rằng?
Đề HSG huyện Toán 9 vòng 1 năm 2022 - 2023 phòng GDĐT Quỳ Hợp - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 vòng 1 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Quỳ Hợp, tỉnh Nghệ An. Trích dẫn Đề HSG huyện Toán 9 vòng 1 năm 2022 – 2023 phòng GD&ĐT Quỳ Hợp – Nghệ An : + Chứng minh rằng nếu tổng của hai số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 9. + Cho tam giác ABC nhọn. Các đường cao AD, BE và CF cắt nhau tại H. a. Chứng minh CA.CE = CB.CD b. Chứng minh sin BAC = AD.BC/AB.AC c. Gọi G là trọng tâm của tam giác ABC. Cho biết tanB.tanC = 3. Chứng minh rằng HG // BC. + Để chào mừng kỉ niệm 40 năm ngày nhà giáo Việt Nam 20/11/1982 – 20/11/2022. Phòng Giáo dục và Đào tạo Huyện Quỳ Hợp tổ chức một giải bóng chuyền Nam có 7 đội bóng tham gia thi đấu vòng tròn 1 lượt (hai đội bất kỳ chỉ thi đấu với nhau 1 trận). Biết đội thứ nhất thắng a1 trận và thua b1 trận, đội thứ 2 thắng a2 trận và thua b2 trận, …, đội thứ 7 thắng a7 trận và thua b7 trận. Chứng minh rằng a12 + a22 + a32 + … + a72 = b12 + b22 + b38 + … + b72.
Đề học sinh giỏi huyện Toán 9 năm 2022 - 2023 phòng GDĐT Nam Đàn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Nam Đàn, tỉnh Nghệ An. Trích dẫn Đề học sinh giỏi huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Nam Đàn – Nghệ An: + Cho a, b, c là các số không âm thỏa mãn: a + b + c = 1. Chứng minh. + Cho tam giác ABC nhọn có hai đường trung tuyến BM và CN vuông góc với nhau tại G. a) Tính tỉ số diện tích của tam giác AMN và tam giác ABC b) Chứng minh AB2 + AC2 = 5BC2 c) Chứng minh: 3(cot B + cot C) ≥ 2. + Cho 10 số nguyên dương 1; 2; 3; ….; 10. Sắp xếp 10 số đó một cách tùy ý thành một hàng. Cộng mỗi số với số thứ tự của nó trong hàng, ta được 10 tổng. Chứng minh rằng trong 10 tổng đó có ít nhất 2 tổng có chữ số tận cùng giống nhau.
Đề học sinh giỏi huyện Toán 9 năm 2022 - 2023 phòng GDĐT Thanh Chương - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thanh Chương, tỉnh Nghệ An; kỳ thi được diễn ra vào thứ Năm ngày 27 tháng 10 năm 2022.