Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Ứng dụng của tích phân trong hình học

Tài liệu gồm 376 trang được biên soạn bởi quý thầy, cô giáo nhóm Geogebra – Nguyễn Chín Em, tuyển tập 647 câu hỏi và bài toán trắc nghiệm chủ đề ứng dụng tích phân trong hình học, có đáp án và lời giải chi tiết, giúp học sinh tham khảo trong quá trình tự học chương trình Giải tích 12 chương 3: Nguyên hàm, tích phân và ứng dụng. Khái quát nội dung tài liệu ứng dụng của tích phân trong hình học: Phần 1 . Câu hỏi và bài tập mức độ nhận biết: 100 câu. + Cho hình phẳng D giới hạn bởi đường cong y = e mũ x, trục hoành và các đường thẳng x = 0, x = 1. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu? + Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường y = cos x,  y = 0, x = 0, x = π quay xung quanh Ox. Phần 2 . Câu hỏi và bài tập mức độ thông hiểu: 199 câu. + Diện tích hình phẳng giới hạn bởi các đường y = √(1 + ln x)/x, y = 0, x = 1, x = e là S = a√2 + b. Khi đó tính giá trị a^2 + b^2? + Tính diện tích hình phẳng giới hạn bởi đồ thị (P): y = x^2 − 4x + 5 và các tiếp tuyến với (P) tại A(1;2) và B(4;5). [ads] Phần 3 . Câu hỏi và bài tập mức độ vận dụng thấp: 199 câu. + Diện tích hình phẳng nằm trong góc phần tư thứ nhất, giới hạn bởi các đường thẳng y = 8x, y = x và đồ thị hàm số y = x^3 là phân số tối giản. Khi đó a + b bằng? + Bác Năm làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Vậy số tiền bác Năm phải trả là? Phần 4 . Câu hỏi và bài tập mức độ vận dụng cao: 100 câu. + Cho hàm số y = f(x) có đồ thị hàm số y = f'(x) cắt trục Ox tại ba điểm có hoành độ a < b < c như hình vẽ. Xét 4  mệnh đề sau:  (1): f(c) < f(a) < f(b). (2): f(c) > f(b) > f(a). (3): f(a) > f(b) > f(c). (4): f(a) > f(b). Trong các mệnh đề trên có bao nhiêu mệnh đề đúng? + Cho số dương a thỏa mãn hình phẳng giới hạn bởi các đường parabol y = ax2 − 2 và y = 4 − 2ax2 có diện tích bằng 16. Tìm giá trị của a. Phần 5 . Ứng dụng tích phân giải bài toán thực tế: 49 câu. + Một quả trứng có hình dạng khối tròn xoay, thiết diện qua trục của nó là hình elip có độ dài trục lớn bằng 6, độ dài trục bé bằng 4. Tính thể tích quả trứng đó. + Sân chơi cho trẻ em hình chữ nhật có chiều dài 100 m và chiều rộng là 60 m người ta làm một con đường nằm trong sân (như hình vẽ).

Nguồn: toanmath.com

Đọc Sách

Chuyên đề Tích phân - Thầy Trần Đình Cư - TP Huế
Tài liệu gồm 110 trang tóm tắt lý thuyết, phân dạng và hướng dẫn giải các bài tập nguyên hàm, tích phân và ứng dụng. Các chuyên mục có trong chuyên đề tích phân của thầy Trần Đình Cư gồm có: A. Nguyên hàm B. Tích phân C. Phân loại và phương pháp tính tích phân – Vấn đề 1: Phép thay biến – Vấn đê 2: Tích phân bằng phương pháp lượng giác hóa – Vấn đề 3: Tích phân lượng giác – Vấn đề 4: Tích phân có chứa giá trị tuyệt đối – Vấn đề 5: Tích phân hàm hữu tỉ [ads] – Vấn đề 6: Tích phân một số hàm đặc biệt – Vấn đề 7: Tích phân từng phần – Vấn đề 8: Ứng dụng tích phân tính diện tích hình phẳng – Vấn đề 9: Tính thể tích vật thể tròn Một số bài tập cần làm trước khi thi Phương pháp đặt ẩn phụ không làm thay đổi cận tích phân Sai lầm thường gặp trong tính tích phân Đề thi đại học từ 2009-2012
Công cụ tính nguyên hàm trực tuyến
Tìm nguyên hàm trực tuyến theo chỉ dẫn bên dưới: + Bước 1: Mở trang công cụ tìm nguyên hàm trực tuyến tại đây . + Bước 2: Nhập hàm cần tính nguyên hàm vào khung tính theo dạng: int f(x) dx , trong đó f(x) là hàm cần tìm nguyên hàm. Ví dụ : Cần tìm nguyên hàm của hàm sinx ta nhập int sinx dx. Nhấn Enter để công cụ bắt đầu tính toán. Xem kết quả bên dưới ô tính. Cách nhập các hàm phức tạp: Để gõ các hàm phức tạp như hàm chưa lũy thừa, phân số, dấu căn … ta gõ theo ngôn ngữ Latex Toán học. Ví dụ : 1. Phân số a/b 2. Lũy thừa a^b 3. Căn bậc hai của a, ta nhập sqrt(a) 4. Căn bậc n của a, ta có thể nhập a^(1/n)
5 bài tập Tích phân dạng đặc biệt có lời giải - Trần Sĩ Tùng
Tài liệu chỉ gồm 2 trang với 5 bài toán tích phân dạng đặc biệt có lời giải chi tiết. Đây là dạng toán tích phân khá hay, được giải bằng cách các phương pháp độc đáo.
Phân dạng bài tập và lời giải chi tiết chuyên đề Tích phân - Lưu Huy Thưởng
Tài liệu gồm 120 trang tuyển chọn và giải chi tiết các toán tích phân, tài liệu do thầy Lưu Huy Thưởng biên soạn. Các nội dung trong tài liệu: PHẦN  I. TÍCH PHÂN CƠ BẢN PHẦN II. TÍCH PHẦN HÀM HỮU TỶ PHẦN III. TÍCH PHÂN HÀM SỐ VÔ TỶ PHẦN IV. TÍCH PHÂN HÀM LƯỢNG GIÁC PHẦN V. TÍCH PHÂN HÀM MŨ VÀ LOGARIT PHẦN VI. TỔNG HỢP PHẦN VII. TUYỂN TẬP MỘT SỐ ĐỀ THI THỬ PHẦN VIII. TÍCH PHÂN HÀM TRỊ TUYỆT ĐỐI. ỨNG DỤNG TÍCH PHÂN [ads]