Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển chọn các bài toán về bất đẳng thức và cực trị hình học

Tài liệu gồm 102 trang, tuyển chọn các bài toán về bất đẳng thức và cực trị hình học hay và khó, có đáp án và lời giải chi tiết, giúp học sinh tham khảo trong quá trình ôn tập thi vào lớp 10 môn Toán và ôn thi học sinh giỏi môn Toán bậc THCS. I. MỘT SỐ KIẾN THỨC CẦN NHỚ 1. Liên hệ giữa cạnh và góc trong tam giác. Định lí 1: Cho tam giác ABC. Nếu ABC ACB thì AC AB và ngược lại. Định lí 2: Cho hai tam giác ABC và MNP có AB MN và AC MP. Khi đó ta có bất đẳng thức BAC NMP BC NP. Định lí 3: Trong tam giác ABC ta có. Định lí 4: Với mọi tam giác ABC ta luôn có. Hệ quả: Cho n điểm A A A A 123 n. Khi đó ta luôn có. Dấu bằng xẩy ra n điểm A A A A 123 n thẳng hàng và sắp xếp theo thứ tự đó. Định lí 5: Cho tam giác ABC và M là trung điểm của BC. Khi đó ta có. 2. Quan hệ giữa đường xiên, đường vuông góc và hình chiếu của đường xiên. Định lí 1: Trong các đường xiên và đường vuông góc kẻ từ một điểm ở ngoài một đường thẳng đến đường thẳng đó thì đường vuông góc là đường ngắn nhất. Định lí 2: Trong hai đường xiên kẻ từ một điểm nằm ngoài một đường thẳng đến đường thẳng đó: Đường xiên nào có hình chiếu lớn hơn thì lớn hơn. Đường xiên nào lớn hơn thì có hình chiếu lớn hơn. Nếu hai đường xiên bằng nhau thì hai hình chiếu bằng nhau, và ngược lại, nếu hai hình chiếu bằng nhau thì hai đường xiên bằng nhau. 3. Các bất đẳng thức trong đường tròn. Định lí 1: Trong một đường tròn thì đường kính là dây lớn nhất. Định lí 2: Trong một đường tròn: Hai dây bằng nhau thì cách đều tâm và ngược lại. Dây nào lớn hơn thì dây đó gần tâm hơn và ngược lại. Định lí 3: Bán kính của hai đường tròn là R r, còn khoảng cách giữa tâm của chúng là d. Điều kiện cần và đủ để hai đường tròn đó cắt nhau là R r d R r. Định lí 4: Cho đường tròn (O; R) và một điểm M bất kì nằm trong đường tròn. Khi đó ta có R d N R d. Với N là điểm bất kì trên đường tròn và d là khoảng cách từ M tới tâm đường tròn. Định lí 5: Cho đường tròn (O; R) và một điểm M bất kì ngoài đường tròn. Khi đó ta có d R MN d R. Với N là điểm bất kì trên đường tròn và d là khoảng cách từ M tới tâm đường tròn. 4. Các bất đẳng thức về diện tích. Định lí 1: Với mọi tam giác ABC ta luôn có ABC 1 S AB AC 2, dấu bằng xẩy ra khi và chỉ khi tam giác ABC vuông tại A. Định lí 2 : Với mọi tứ giác ABC ta luôn có ABCD 1 S AC BD 2, dấu bằng xẩy ra khi và chỉ khi AC vuông góc với BD. Định lí 3: Với mọi tứ giác ABCD ta luôn có ABCD 1 S AB BC AD DC 2, dấu bằng xẩy ra khi và chỉ khi 0 B D 90. 5. Một số bất đẳng thức đại số thường dùng. Với x, y là các số thực dương, ta luôn có 2 2 2 2 2 x y 2xy 2 x y x y, dấu bằng xẩy ra khi và chỉ khi x y. Với x, y, z là các số thực dương, ta luôn có. Bất đẳng thức Cauchy: Với x, y, z là các số thực dương, ta luôn có. Bất đẳng thức Bunhiacopxki. Với a, b, c và x, y, z là các số thực, ta luôn có. II. CÁC VÍ DỤ MINH HỌA III. BÀI TẬP TỰ LUYỆN IV. HƯỚNG DẪN GIẢI

Nguồn: toanmath.com

Đọc Sách

Tài liệu ôn thi vào môn Toán Vũ Văn Bắc
Nội dung Tài liệu ôn thi vào môn Toán Vũ Văn Bắc Bản PDF - Nội dung bài viết Chất lượng tài liệu ôn thi Toán Vũ Văn Bắc Chất lượng tài liệu ôn thi Toán Vũ Văn Bắc Tài liệu ôn thi Toán của Vũ Văn Bắc là một nguồn tư liệu hữu ích cho các học sinh đang ôn luyện vào môn Toán. Với tổng cộng 42 trang, tài liệu bao gồm nhiều vấn đề quan trọng: 1. Rút gọn biểu thức có chứa căn: Phần này giúp học sinh nắm vững kỹ năng rút gọn biểu thức để giải các bài toán liên quan. 2. Phương trình bậc hai một ẩn: Hướng dẫn cách giải phương trình bậc hai một ẩn một cách chi tiết và dễ hiểu. 3. Hệ phương trình đại số: Bao gồm các bài toán luyện tập về hệ phương trình để học sinh có thể áp dụng vào thực tế. 4. Các bài toán về đồ thị hàm số: Phần này giúp học sinh hiểu rõ hơn về đồ thị hàm số và cách vẽ đồ thị cho từng hàm số. 5. Giải toán bằng cách lập phương trình: Hướng dẫn cách giải các bài toán phức tạp bằng cách lập phương trình đúng. 6. Các bài toán hình học tổng hợp: Bao gồm các bài toán hình học đa dạng và phức tạp để học sinh rèn luyện kỹ năng giải bài toán. 7. Một số đề toán luyện thi: Cuối cùng, tài liệu cung cấp một số đề toán luyện thi giúp học sinh tự kiểm tra kiến thức và kỹ năng của mình. Với các vấn đề đa dạng và phong phú như vậy, tài liệu ôn thi Toán Vũ Văn Bắc sẽ giúp học sinh không chỉ tự tin hơn trong việc ôn luyện môn Toán mà còn nắm vững kiến thức cần thiết để đạt được kết quả cao trong kỳ thi sắp tới.