Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề vector trong không gian, quan hệ vuông góc - Nguyễn Bảo Vương

Tài liệu gồm 165 trang gồm lý thuyết, ví dụ mẫu có lời giải chi tiết và bài tập trắc nghiệm chuyên đề vector trong không gian, quan hệ vuông góc. Tập 1. Vectơ trong không gian A. Tóm tắt sách giáo khoa B. Luyện kĩ năng giải các dạng bài tập Bài toán 01: Chứng minh đẳng thức vectơ Bài toán 02: Chứng minh ba vectơ đồng phẳng và bốn điểm đồng phẳng Bài toán 03: Tính độ dài của đoạn thẳng Bài toán 04: Sử dụng điều kiện đồng phẳng của bốn điểm để giải bài toán hình không gian Các bài toán luyện tập Tập 2. Góc giữa hai đường thẳng. Hai đường thẳng vuông góc A. Chuẩn kiến thức B. Luyện kĩ năng giải các dạng bài tập Bài toán 01: Tính góc giữa hai đường thẳng Bài toán 02: Dùng tích vô hướng để chứng minh hai đường thẳng vuông góc Các bài toán luyện tập [ads] Tập 3. Đường thẳng và mặt phẳng vuông góc A. Chuẩn kiến thức B. Luyện kĩ năng giải các dạng bài tập Bài toán 01: Chứng minh đường thẳng vuông góc với mặt phẳng Bài toán 02: Thiết diện đi qua một điểm và vuông góc với một đường thẳng Bài toán 03: Tính góc gữa đường thẳng và mặt phẳng Bài toán 04: Tìm tập hợp hình chiếu của một điểm trên một đường thẳng hay một mặt phẳng di động Các bài toán luyện tập Tập 4. Hai mặt phẳng vuông góc – khoảng cách Hai mặt phẳng vuông góc A. Chuẩn kiến thức B. Luyện kĩ năng giải các dạng bài tập Bài toán 01: Tính góc giữa hai mặt phẳng Bài toán 02: Chứng minh hai mặt phẳng vuông góc Bài toán 03: Ứng dụng công thức hình chiếu Bài toán 04: Xác định thiết diện chứa một đường thẳng và vuông góc với một mặt phẳng Khoảng cách A. Chuẩn kiến thức B. Luyện kĩ năng giải các dạng bài tập Bài toán 01: Tính khoảng cách từ điểm đến đường thẳng Bài toán 02: Tính khoảng cách từ một điểm đến một mặt phẳng Bài toán 03: Khoảng cách giữa hai đường thẳng chéo nhau Bài toán 04: Ứng dụng phép chiếu vuông góc để tính khoảng cách giữa hai đường thẳng chéo nhau Các bài toán luyện tập Tập 5. 280 bài tập trắc nghiệm tự luyện Tổng hợp lần 1. Chương III. Quan hệ vuông góc Đáp án Tổng hợp lần 2. Chương III: Vectơ trong không gian Bài 1: Vectơ trong không gian Bài 2: Hai đường thẳng vuông góc Bài 3: Đường thẳng vuông góc với mặt phẳng Bài 4: Hai mặt phẳng vuông góc Bài 5: Khoảng cách Tổng hợp lần 3. Chương 3. Vectơ – quan hệ vuông góc Đáp án

Nguồn: toanmath.com

Đọc Sách

Bài toán góc trong không gian - Đặng Việt Đông
Tài liệu gồm có 209 trang, được biên soạn bởi thầy Đặng Việt Đông, phân dạng và hướng dẫn giải một số bài tập trắc nghiệm chuyên đề góc trong không gian, giúp học sinh học tốt chương trình Hình học lớp 11 và ôn thi THPT Quốc gia môn Toán. Khái quát nội dung tài liệu bài toán góc trong không gian – Đặng Việt Đông: DẠNG 1 : GÓC GIỮA HAI VÉC TƠ TRONG KHÔNG GIAN. 1. Góc giữa hai vectơ trong không gian. 2. Tích vô hướng giữa hai vectơ trong không gian. DẠNG 2 : GÓC GIỮA HAI ĐƯỜNG THẲNG TRONG KHÔNG GIAN. 1. Góc giữa hai đường thẳng. 2. Xác định góc giữa hai đường thẳng bằng phương pháp vectơ. 3. Tính góc giữa hai đường thẳng trong không gian bằng phương pháp dựng hình. [ads] DẠNG 3 : GÓC GIỮA ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN. 1. Xác định góc bằng định nghĩa. 2. Tính góc dùng khoảng cách. DẠNG 4 : GÓC GIỮA HAI MẶT PHẲNG TRONG KHÔNG GIAN. 1. Xác định góc giữa hai mặt phẳng bằng định nghĩa. 2. Xác định góc giữa hai mặt phẳng bằng cách tạo mặt phẳng vuông góc giao tuyến. 3. Cách xác định góc giữa hai mặt phẳng cắt nhau. Các bài toán trắc nghiệm trong tài liệu được chọn lọc, sắp xếp theo các mức độ nhận thức với độ khó tăng dần, có đáp án và lời giải chi tiết. Xem thêm : Bài toán khoảng cách trong không gian – Nguyễn Tất Thu
Bài toán hai mặt phẳng vuông góc - Diệp Tuân
Tài liệu gồm 42 trang, được biên soạn bởi thầy giáo Diệp Tuân, phân dạng và hướng dẫn phương pháp giải một số dạng toán liên quan đến chủ đề hai mặt phẳng vuông góc trong chương trình Hình học 11 chương 3. Khái quát nội dung tài liệu bài toán hai mặt phẳng vuông góc – Diệp Tuân: Dạng 1 . Chứng minh hai mặt phẳng vuông góc với nhau. Để chứng minh hai mặt phẳng (P) và (Q) vuông góc với nhau ta có thể dùng một trong các cách sau: Cách 1. Chứng minh trong mặt phẳng này có một đường thẳng vuông góc với mặt phẳng kia. Cách 2. Xác định góc giữa hai mặt phẳng, rồi tính trực tiếp góc đó bằng 90 độ. Cách 3. Tìm hai vec tơ n1 và n2 lần lượt vuông góc với các mặt phẳng (P) và (Q) rồi chứng minh n1.n2 = 0. Dạng 2 . Xác định góc của hai mặt. Để tính góc giữa hai mặt phẳng (α) và (β) ta có thể thực hiện theo một trong các cách sau: Cách 1: + Bước 1: Tìm giao tuyến Δ = (α) ∩ (β). + Bước 2: Lấy một điểm M ∈ (β). Dựng hình chiếu H của M trên (α) hay MH ⊥ (α). + Bước 3: Lấy chân đường vuông góc là H và dựng HN ⊥ Δ. + Bước 4: Ta chứng minh MN ⊥ Δ. + Bước 5: Kết luận. Cách 2: + Tìm hai đường thẳng a và b lần lượt vuông góc với hai mặt phẳng (α) và (β). + Khi đó góc giữa hai đường thẳng a và b chính là góc giữa hai mặt phẳng (α) và (β). [ads] Dạng 3 . Xác định thiết diện chứa một đường thẳng và vuông góc với một mặt phẳng. Cho mặt phẳng (α) và đường thẳng a không vuông góc với (α). Xác định mặt phẳng (β) chứa a và vuông góc với (α). Để giải bài toán này ta làm theo các bước sau: + Bước 1. Chọn một điểm A thuộc a. + Bước 2. Dựng đường thẳng b đi qua A và vuông góc với (α). Khi đó mp(a,b) chính là mặt phẳng (β). Dạng 4 . Ứng dụng công thức hình chiếu tính diện tích. Giả sử S là diện tích đa giác (H) nằm trong (α) và S’ là diện tích của hình chiếu (H’) của (H) trên (β) thì S’ = S.cosφ trong đó φ là góc giữa hai mặt phẳng (α) và (β).
Tóm tắt lý thuyết và bài tập trắc nghiệm véctơ trong không gian, quan hệ vuông góc
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm véctơ trong không gian, quan hệ vuông góc, một chủ đề rất quan trọng trong chương trình Hình học 11 chương 3. Bên cạnh tài liệu véctơ trong không gian, quan hệ vuông góc dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. [ads] Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm véctơ trong không gian, quan hệ vuông góc: Bài 1 . VECTƠ TRONG KHÔNG GIAN. Dạng toán 1: Chứng minh đẳng thức. Phân tích vectơ. Áp dụng công thức tính tích vô hướng. + Áp dụng các phép toán đối với vectơ (phép cộng hai vectơ, phép hiệu hai vectơ, phép nhân một vectơ với một số). + Áp dụng các tính chất đặc biệt của hai vectơ cùng phương, trung điểm của đoạn thẳng, trọng tâm của tam giác. Dạng toán 2: Chứng minh hai đường thẳng song song, ba điểm thẳng hàng, đường thẳng song song với mặt phẳng, các tập hợp điểm đồng phẳng. + Ứng dụng điều kiện của hai vectơ cùng phương, ba vectơ đồng phẳng. Bài 2 . GÓC GIỮA HAI ĐƯỜNG THẲNG. Dạng toán: Xác định góc giữa hai đường thẳng, chứng minh hai đường thẳng vuông góc. Bài 3 . ĐƯỜNG THẲNG VUÔNG GÓC MẶT PHẲNG. Dạng toán: Xác định góc giữa đường thẳng và mặt phẳng. Bài 4 . GÓC GIỮA HAI MẶT PHẲNG. Dạng toán: Góc giữa hai mặt phẳng.
Vectơ trong không gian, quan hệ vuông góc - Nguyễn Tài Chung
Tài liệu gồm 232 trang được biên soạn bởi thầy Nguyễn Tài Chung, bao gồm tóm tắt lí thuyết SGK, một số dạng toán trọng tâm, bài tập ôn luyện và bài tập trắc nghiệm có đáp án và lời giải chi tiết chuyên đề vectơ trong không gian, quan hệ vuông góc, giúp học sinh học tốt chương trình Đại số và Giải tích 11 chương 3. Khái quát nội dung tài liệu vectơ trong không gian – quan hệ vuông góc – Nguyễn Tài Chung: 1 Vectơ trong không gian. Sự đồng phẳng của các vectơ. + Dạng 1. Chứng minh các đẳng thức vectơ. Biểu thị một vectơ theo các vectơ không đồng phẳng. + Dạng 2. Xác định vị trí các điểm thỏa điều kiện vectơ, chứng minh các điểm trùng nhau, các điểm thẳng hàng. + Dạng 3. Điều kiện để ba vectơ đồng phẳng. Chứng minh bốn điểm cùng nằm trong một mặt phẳng, đường thẳng song song với đường thẳng, đường thẳng song song với mặt phẳng. + Dạng 4. Dùng vectơ để chứng minh đẳng thức về độ dài. 2 Hai đường thẳng vuông góc. + Dạng 5. Tính góc α giữa hai đường thẳng a và b. + Dạng 6. Chứng minh hai đường thẳng a và b vuông góc với nhau. 3 Đường thẳng vuông góc với mặt phẳng. + Dạng 7. Chứng minh đường thẳng a vuông góc với mp(P). + Dạng 8. Chứng minh hai đường thẳng vuông góc với nhau. + Dạng 9. Dựng mặt phẳng (P) qua điểm O và vuông góc với đường thẳng d. [ads] + Dạng 10. Dựng đường thẳng đi qua một điểm A cho trước và vuông góc với mặt phẳng (P) cho trước. Tính khoảng cách từ một điểm đến một mặt phẳng. + Dạng 11. Xác định góc φ (với 00 ≤ φ ≤ 900) giữa đường thẳng a và mặt phẳng (P). 4 Hai mặt phẳng vuông góc. + Dạng 12. Xác định góc giữa hai mặt phẳng. Diện tích hình chiếu của một đa giác. + Dạng 13. Chứng minh hai mặt phẳng (P) và (P’) vuông góc với nhau. + Dạng 14. Cho trước mặt phẳng (Q) và đường thẳng a không vuông góc với mặt phẳng (Q). Xác định mặt phẳng (P) chứa đường thẳng a và (P)⊥(Q). + Dạng 15. Xác định chân đường vuông góc hạ từ một điểm xuống một mặt phẳng: Cho mặt phẳng (P) và điểm M không thuộc mặt phẳng đó. Xác định hình chiếu của M trên (P). 5 Khoảng cách. + Dạng 16. Tính khoảng cách từ M đến đường thẳng ∆. + Dạng 17. Tính khoảng cách từ điểm M đến mặt phẳng (P). + Dạng 18. Dựng đoạn vuông góc chung của hai đường thẳng chéo nhau a và b. Khoảng cách giữa hai đường thẳng.