Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lần 2 năm 2023 2024 trường Lương Thế Vinh Hà Nội

Nội dung Đề thi thử Toán vào lần 2 năm 2023 2024 trường Lương Thế Vinh Hà Nội Bản PDF - Nội dung bài viết Đề thi thử Toán vào lần 2 năm 2023-2024 trường Lương Thế Vinh Hà Nội Đề thi thử Toán vào lần 2 năm 2023-2024 trường Lương Thế Vinh Hà Nội Chào đón quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến mọi người đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 2 năm học 2023-2024 của trường THCS & THPT Lương Thế Vinh, Hà Nội. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm để giúp các em ôn tập hiệu quả. Đề thi sẽ diễn ra vào Chủ Nhật, ngày 27 tháng 02 năm 2023. Dưới đây là một số câu hỏi mẫu trong đề thi: 1. Một con chim bói cá đậu trên cành cây cao 3m so với mặt nước hồ. Nếu chim nhìn thấy con cá bơi sát mặt nước và lao xuống để bắt cá với góc tạo bởi đường bay của chim và mặt hồ là 10°, hỏi khoảng cách ban đầu của chúng là bao nhiêu mét? 2. Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Hai vòi nước chảy vào một bể trống, biết rằng vòi thứ nhất chảy 1 giờ, sau đó vòi thứ hai chảy 45 phút nữa thì đầy 3/4 bể. Nếu mở vòi thứ nhất 15 phút trước khi mở vòi thứ hai chảy thêm 30 phút, thì bể sẽ đầy 13/24. Hỏi mỗi vòi riêng chảy thì sau bao lâu bể sẽ đầy? 3. Cho parabol y = x^2 và đường thẳng y = mx + 6. a) Với m=2: - Tìm giao điểm của đường thẳng và Parabol. - Gọi các giao điểm trên là A và B. Tính độ dài hình chiếu vuông góc của đoạn AB trên trục Ox. b) Tìm các giá trị nguyên của m để đường thẳng cắt Parabol tại hai điểm phân biệt. Đây chỉ là một số câu hỏi mẫu trong đề thi. Hy vọng đề thi sẽ giúp các em ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em may mắn và thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi vào 10 môn Toán (chuyên Toán) năm 2021 - 2022 trường chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào 10 môn Toán (chuyên Toán) năm 2021 – 2022 trường chuyên Lam Sơn – Thanh Hóa; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 05 tháng 06 năm 2021. Trích dẫn đề thi vào 10 môn Toán (chuyên Toán) năm 2021 – 2022 trường chuyên Lam Sơn – Thanh Hóa : + Cho bảng kẻ ô vuông kích thước 8 8 gồm có 64 ô vuông con (như hình vẽ bên). Người ta đặt 33 quân cờ vào các ô vuông con của bảng sao cho mỗi ô vuông con có không quá một quân cờ. Hai quân cờ được gọi là “chiếu nhau” nếu chúng nằm cùng một hàng hoặc nằm cùng một cột. Chứng minh rằng với mỗi cách đặt luôn tồn tại ít nhất 5 quân cờ đôi một không chiếu nhau. + Cho hai đường tròn O và O cắt nhau tại hai điểm A và B. Tiếp tuyến tại A của đường tròn tâm O cắt đường tròn tâm O tại P P A. Tiếp tuyến tại A của đường tròn tâm O cắt đường tròn tâm O tại Q Q A. Gọi I là điểm sao cho tứ giác AOIO là hình bình hành và D đối xứng với A qua B. a) Chứng minh rằng I là tâm đường tròn ngoại tiếp tam giác A P Q. Từ đó suy ra tứ giác A D P Q nội tiếp. b) Gọi M là trung điểm của đoạn PQ. Chứng minh ADP QDM. c) Giả sử hai đường thẳng IB và PQ cắt nhau tại S. Gọi K là giao điểm của ADvà PQ. Chứng minh: 2 1 1 SK SP SQ. + Cho các số hữu tỉ a b c đôi một phân biệt. Đặt 2 2 2 1 1 1 B a b b c c a. Chứng minh rằng B là số hữu tỉ.
Đề thi vào 10 môn Toán (chuyên) năm 2021 - 2022 trường chuyên Lê Hồng Phong - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào 10 môn Toán (chuyên) năm 2021 – 2022 trường chuyên Lê Hồng Phong – Nam Định; đề thi có đáp án, lời giải chi tiết, hướng dẫn chấm và biểu điểm (bảng chính thức do sở Giáo dục và Đào tạo tỉnh Nam Định công bố). Trích dẫn đề thi vào 10 môn Toán (chuyên) năm 2021 – 2022 trường chuyên Lê Hồng Phong – Nam Định : + Cho tam giác nhọn ABC (AB AC) nội tiếp đường tròn (O). Đường phân giác trong của BAC cắt đường tròn (O) tại D D A. Trên cung nhỏ AC của đường tròn (O) lấy điểm G khác C sao cho AG GC; một đường tròn có tâm là K đi qua A, G và cắt đoạn thẳng AD tại điểm P nằm bên trong tam giác ABC. Đường thẳng GK cắt đường tròn (O) tại điểm M M G. a) Chứng minh các tam giác KPG ODG đồng dạng với nhau. b) Chứng minh GP MD là hai đường thẳng vuông góc. c) Gọi F là giao điểm của hai đường thẳng OD và KP, đường thẳng qua A và song song với BC cắt đường tròn (K) tại điểm E E A. Chứng minh rằng tứ giác DGFP là tứ giác nội tiếp và 0 EGF 90. + Xét hai tập hợp A B khác ∅ thỏa mãn A B và A B. Biết rằng A có vô hạn phần tử và tổng của mỗi phần tử thuộc A với mỗi phần tử thuộc B là phần tử thuộc B. Gọi x là phần tử bé nhất thuộc B thỏa mãn x ≠ 1. Hãy tìm x. + Cho 1 2 12 pp p … là các số nguyên tố lớn hơn 3. Chứng minh rằng 22 2 1 2 12 pp p chia hết cho 12.
Đề thi vào 10 môn Toán (chung) năm 2021 - 2022 trường chuyên Lê Hồng Phong - Nam Định (Đề 1)
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào 10 môn Toán (chung) năm 2021 – 2022 trường chuyên Lê Hồng Phong – Nam Định (Đề 1); đề thi dành cho học sinh thi vào các lớp chuyên tự nhiên; đề thi có đáp án, lời giải chi tiết, hướng dẫn chấm và biểu điểm. Trích dẫn đề thi vào 10 môn Toán (chung) năm 2021 – 2022 trường chuyên Lê Hồng Phong – Nam Định (Đề 1) : + Cho tam giác nhọn ABC AB AC nội tiếp đường tròn tâm O đường kính AP. Các đường cao BE và CF cắt nhau tại H. 1) Chứng minh rằng tứ giác BCEF nội tiếp và AE AC AF AB. 2) Gọi K I lần lượt là trung điểm của EF và AH. Chứng minh IK song song với AP. 3) Gọi M là giao điểm của IK và BC; N là giao điểm của MH với cung nhỏ AC của đường tròn (O). Chứng minh rằng HMC HAN. + Tìm tất cả các giá trị của tham số m để đường thẳng 2 y mx m (m ≠ 0) và đường thẳng y x 9 2 song song. + Tính thể tích của hình nón có đường sinh bằng 5cm và bán kính đáy 3cm.
Đề thi vào 10 môn Toán (chung) năm 2021 - 2022 trường chuyên Lê Hồng Phong - Nam Định (Đề 2)
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào 10 môn Toán (chung) năm 2021 – 2022 trường chuyên Lê Hồng Phong – Nam Định (Đề 2); đề thi dành cho học sinh thi vào các lớp chuyên xã hội; đề thi có đáp án, lời giải chi tiết, hướng dẫn chấm và biểu điểm. Trích dẫn đề thi vào 10 môn Toán (chung) năm 2021 – 2022 trường chuyên Lê Hồng Phong – Nam Định (Đề 2) : + Cho tam giác nhọn ABC AB AC nội tiếp đường tròn tâm O đường kính AP. Các đường cao BE và CF cắt nhau tại H. 1) Chứng minh rằng tứ giác BCEF nội tiếp và AE AC AF AB. 2) Gọi K I lần lượt là trung điểm của EF và AH. Chứng minh AP EF và AP // IK. 3) Gọi M là giao điểm của IK và BC; N là giao điểm của MH với cung nhỏ AC của đường tròn (O). Chứng minh rằng M là trung điểm của đoạn BC và HMC HAN. + Tìm tất cả các giá trị của tham số m để đường thẳng y mx 1 (m ≠ 0) và đường thẳng y x 9 2 song song. + Tính thể tích của hình nón có chiều cao bằng 4cm và bán kính đáy 3cm.