Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

32 chủ đề học tập Hình học 9

Tài liệu gồm 187 trang, tuyển tập 32 chủ đề học tập Hình học 9. Chương 1 – Chủ đề 1. Hệ thức lượng trong tam giác vuông. Chương 1 – Chủ đề 2. Tỉ số lượng giác của góc nhọn. Chương 1 – Chủ đề 3. Một số hệ thức về cạnh và góc trong tam giác vuông. Chương 1 – Chủ đề 4. Tổng ôn Chương 1. Chương 1 – Chủ đề 5. Kiểm tra khảo sát chất lượng Chương 1. Chương 2 – Chủ đề 1. Sự xác định đường tròn. Chương 2 – Chủ đề 2. Đường kính và dây cung. Chương 2 – Chủ đề 3. Vị trí tương đối của đường thẳng và đường tròn. Chương 2 – Chủ đề 4. Dấu hiệu nhận biết tiếp tuyến của đường tròn. Chương 2 – Chủ đề 5. Tính chất tiếp tuyến cắt nhau. Chương 2 – Chủ đề 6. Luyện tập tính chất hai tiếp tuyến cắt nhau. Chương 2 – Chủ đề 7. Vị trí tương đối của hai đường tròn. Chương 2 – Chủ đề 8 + 9. Tổng ôn Chương 2. Chương 2 – Chủ đề 10. Đề kiểm tra đánh giá và hướng dẫn chi tiết. Chương 3 – Chủ đề 1. Góc ở tâm. Số đo cung. Chương 3 – Chủ đề 2. Liên hệ cung và dây. Chương 3 – Chủ đề 3. Góc nội tiếp. Chương 3 – Chủ đề 4. Góc tạo bởi tiếp tuyến và giây cung. Chương 3 – Chủ đề 5. Góc có đỉnh bên trong đường tròn. Chương 3 – Chủ đề 6. Cung chứa góc. Chương 3 – Chủ đề 7. Tứ giác nội tiếp. Chương 3 – Chủ đề 8. Độ dài đường tròn, cung tròn. Chương 3 – Chủ đề 9. Diện tích hình tròn, hình quạt tròn. Chương 3 – Chủ đề 10. Tổng ôn Chương 3. Chương 3 – Chủ đề 11. Kiểm tra đánh giá ôn tập Chương 3. Chương 4 – Chủ đề 1. Diện tích xung quanh và thể tích của hình trụ. Chương 4 – Chủ đề 2. Diện tích xung quanh và thể tích của hình nón, hình nón cụt. Chương 4 – Chủ đề 3. Diện tích mặt cầu và thể tích hình cầu. Chương 4 – Chủ đề 4. Tổng ôn Chương 4. Chương 4 – Chủ đề 5. Đề kiểm tra Chương 4.

Nguồn: toanmath.com

Đọc Sách

Tài liệu Toán 9 chủ đề tỉ số lượng giác của góc nhọn
Tài liệu gồm 15 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề tỉ số lượng giác của góc nhọn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Định nghĩa. 2. Tỉ số lượng giác của hai góc phụ nhau. 3. Một số hệ thức liên hệ giữa các tỉ số lượng giác. 4. Bảng tỷ số lượng giác của một số góc đặc biệt. B. Bài tập và các dạng toán. Dạng toán: Tính tỉ số lượng giác của góc nhọn, tính cạnh, tính góc. Cách giải: Sử dụng các kiến thức trong phần tóm tắt lý thuyết. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề biến đổi đơn giản biểu thức chứa căn bậc hai
Tài liệu gồm 22 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề biến đổi đơn giản biểu thức chứa căn bậc hai trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Đưa thừa số ra ngoài dấu căn. 2. Đưa thừa số vào trong dấu căn. 3. Khử mẫu của biểu thức lấy căn. 4. Trục căn thức ở mẫu. B. Bài tập và các dạng toán. Dạng 1: Đưa thừa số ra ngoài dấu căn hoặc vào trong dấu căn. Dạng 2: So sánh các căn bậc hai. Dạng 3: Rút gọn biểu thức chứa căn bậc hai. Dạng 4: Khử mẫu của biểu thức dưới dấu căn bậc hai. Dạng 5: Trục căn thức ở mẫu. Dạng 6: Sử dụng các phép biến đổi căn thức bậc hai để giải phương trình. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề căn bậc ba
Tài liệu gồm 20 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề căn bậc ba trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. I. Căn bậc ba. II. Căn bậc n. B. Bài tập và các dạng toán. Dạng 1: Thực hiện phép tính có chứa căn bậc ba. Dạng 2: Khử mẫu thức chứa căn bậc ba. Dạng 3: So sánh các căn bậc ba. Dạng 4: Giải phương trình chứa căn bậc ba. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề căn bậc hai
Tài liệu gồm 25 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề căn bậc hai trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Khái niệm căn bậc hai. 2. Khái niệm về căn bậc hai số học. 3. So sánh các căn bậc hai số học. B. Bài tập áp dụng và các dạng toán. Dạng 1 : Tìm căn bậc hai và căn bậc hai số học của một số. Cách giải: Ta sử dụng các kiến thức sau: – Nếu a > 0 thì các căn bậc hai của a là ±a. – Căn bậc hai số học của a là a. – Nếu a = 0 thì căn bậc hai của a và căn bậc hai số học của a cùng bằng 0. – Nếu a < 0 thì a không có căn bậc hai và do đó không có căn bậc hai số học. Dạng 2 : Tìm số có căn bậc hai số học là một số cho trước. Cách giải: Với số thực a ≥ 0 cho trước, ta có 2 a chính là số có căn bậc hai số học bằng a. Dạng 3 : Tính giá trị của biểu thức chứa căn bậc hai. Cách giải: Ta sử dụng kiến thức: Với số a ≥ 0 ta có 2 2 a aa a. Dạng 4 : So sánh các căn bậc hai số học. Cách giải: Với: a b ab a b. Dạng 5 : Tìm giá trị của x thỏa mãn điều kiện cho trước. Cách giải: Ta sử dụng chú ý sau: 2 2 xa x a 8. Với số a ≥ 0 ta có: 2 xa xa. Dạng 6 : Chứng minh một số là số vô tỷ. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.