Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG cấp tỉnh Toán 11 năm 2018 - 2019 sở GDĐT Bắc Ninh

Thứ Sáu ngày 15 tháng 03 năm 2019, sở Giáo dục và Đào tạo Bắc Ninh tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán 11 năm học 2018 – 2019, đây là dịp để các em được thể hiện hết năng lực của bản thân, những em được chọn sẽ là những tấm gương tiêu biểu trong học tập để học sinh toàn tỉnh noi theo, đồng thời qua kỳ thi này, sở Giáo dục và Đào tạo tỉnh Bắc Ninh sẽ tuyển chọn những em xuất sắc nhất để thành lập đội tuyển học sinh giỏi Toán 11 của tỉnh, tham dự kỳ thi học sinh giỏi Toán 11 cấp Quốc gia. Đề thi chọn HSG cấp tỉnh Toán 11 năm 2018 – 2019 sở GD&ĐT Bắc Ninh được biên soạn theo hình thức tự luận với 06 bài toán, thời gian làm bài 150 phút (không kể thời gian giám thị coi thi phát đề), đề thi có lời giải chi tiết. Trích dẫn đề thi chọn HSG cấp tỉnh Toán 11 năm 2018 – 2019 sở GD&ĐT Bắc Ninh : + Lớp 11 Toán có 34 học sinh tham gia kiểm tra môn Toán để chọn đội tuyển dự thi học sinh giỏi cấp tỉnh. Đề kiểm tra gồm 5 bài toán. Biết rằng mỗi bài toán thì có ít nhất 19 học sinh giải quyết được. Chứng minh rằng có 2 học sinh sao cho mỗi bài toán đều được một trong hai học sinh này giải quyết được. [ads] + Cho hình chóp S.ABCD, có đáy ABCD là hình chữ nhật với AB = a√3, BC = a và SA = SB = SC = SD = 2a. Gọi K là hình chiếu vuông góc của B trên AC và H là hình chiếu vuông góc của K trên SA. a) Tính độ dài đoạn HK theo a. b) Gọi I là giao điểm của hai đường thẳng HK, SO. Mặt phẳng (α) di động, luôn đi qua I và cắt các đoạn thẳng SA, SB, SC, SD lần lượt tại A’, B’, C’, D’. Tìm giá trị nhỏ nhất của P = SA’.SB’.SC’.SD’. + Cho tứ diện đều ABCD có đường cao AH. Mặt phẳng (P) chứa AH cắt ba cạnh BC, CD, BD lần lượt tại M, N, P; gọi α, β, γ là góc hợp bởi AM, AN, AP với mặt phẳng (BCD). Chứng minh rằng tanα^2 + tanβ^2 + tanγ^2 = 12.

Nguồn: toanmath.com

Đọc Sách

Đề Olympic Toán 11 năm 2020 - 2021 liên cụm trường THPT - Hà Nội
Thứ Bảy ngày 20 tháng 03 năm 2021, liên cụm trường THPT: Thanh Xuân – Cầu Giấy – Mê Linh – Sóc Sơn – Đông Anh (thành phố Hà Nội) tổ chức kỳ thi Olympic Toán 11 năm học 2020 – 2021. Đề Olympic Toán 11 năm 2020 – 2021 liên cụm trường THPT – Hà Nội được biên soạn theo dạng đề thi tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề Olympic Toán 11 năm 2020 – 2021 liên cụm trường THPT – Hà Nội : + Cho tam giác ABC cân tại A. Gọi AH là đường cao xuất phát từ đỉnh A. Biết độ dài các đoạn thẳng BC, AH, AB theo thứ tự tạo thành một cấp số nhân. Tìm công bội của cấp số nhân đó. + Trong hộp có 25 tấm thẻ giống nhau được đánh số theo thứ tự từ 1 đến 25. Rút ngẫu nhiên ba tấm thẻ từ trong hộp. 1) Có bao nhiêu cách để rút được ít nhất hai tấm thẻ mang số lẻ? 2) Tính xác suất để trong ba số ghi trên ba tấm thẻ rút được không có hai số nào là hai số tự nhiên liên tiếp. +  Gọi là mặt phẳng thay đổi và luôn đi qua trung điểm Q của đoạn thẳng AG. Mặt phẳng cắt các tia lần lượt tại các điểm M, N, P (không trùng với điểm A).  Tìm giá trị lớn nhất của biểu thức T.
Đề học sinh giỏi Toán 11 năm 2020 - 2021 trường Phùng Khắc Khoan - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề học sinh giỏi Toán 11 năm học 2020 – 2021 trường THPT Phùng Khắc Khoan, huyện Thạch Thất, thành phố Hà Nội; đề gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề học sinh giỏi Toán 11 năm 2020 – 2021 trường Phùng Khắc Khoan – Hà Nội : + Cho một đa giác lồi (H) có 30 đỉnh A1A2…A30. Gọi X là tập hợp các tam giác có 3 đỉnh là 3 đỉnh của (H). Chọn ngẫu nhiên 2 tam giác trong X. Tính xác suất để chọn được 2 tam giác là các tam giác có 1 cạnh là cạnh của đa giác (H). + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, (a) là mặt phẳng thay đổi qua AB và cắt các cạnh SC, SD lần lượt tại M, N (M khác S, C và N khác S, D). Gọi K là giao điểm của hai đường thẳng AN và BM. Chứng minh rằng biểu thức T = AB/MN – BC/SK có giá trị không đổi. + Cho hình lăng trụ tam giác ABC.A’B’C’ có đáy là tam giác đều cạnh a, các mặt bên đều là hình vuông. Gọi M, N, E lần lượt là trung điểm của các cạnh AB, AA’, A’C’. Tính diện tích thiết diện khi cắt lăng trụ ABC.A’B’C’ bởi mặt phẳng (MNE).
Đề Olympic 27 tháng 4 Toán 11 năm 2020 - 2021 sở GDĐT Bà Rịa - Vũng Tàu
Thứ Sáu ngày 12 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu tổ chức kỳ thi Olympic 27 tháng 4 môn Toán lớp 11 năm học 2020 – 2021. Đề Olympic 27 tháng 4 Toán 11 năm 2020 – 2021 sở GD&ĐT Bà Rịa – Vũng Tàu gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút.
Đề HSG cấp trường Toán 11 năm 2020 - 2021 trường Yên Phong 2 - Bắc Ninh
Thứ Tư ngày 10 tháng 03 năm 2021, trường THPT Yên Phong số 2, tỉnh Bắc Ninh tổ chức kỳ thi chọn học sinh giỏi cấp trường môn Toán lớp 11 năm học 2020 – 2021. Đề HSG cấp trường Toán 11 năm 2020 – 2021 trường Yên Phong 2 – Bắc Ninh gồm 02 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề HSG cấp trường Toán 11 năm 2020 – 2021 trường Yên Phong 2 – Bắc Ninh : + Trong hệ tọa độ Oxy, cho hình thoi ABCD cạnh AC có phương trình là, hai đỉnh B, D lần lượt thuộc các đường thẳng. Biết rằng diện tích hình thoi bằng 75, đỉnh A có hoành độ âm. Tìm toạ độ các đỉnh hình thoi. + Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn BC = 2a đáy bé AD, AB. Mặt bên SAD là tam giác đều, M là một điểm di động trên AB, mặt phẳng (P) đi qua M và song song với SA, BC. a) Tìm thiết diện của hình chóp khi cắt bởi (P). Thiết diện là hình gì? b) Tính diện tích thiết diện theo a, b và x AM x b. Tìm x theo b để diện tích thiết diện lớn nhất. + Tam giác mà ba đỉnh của nó là ba trung điểm ba cạnh của tam giác ABC được gọi là tam giác trung bình của tam giác ABC. Ta xây dựng dãy các tam giác sao cho là một tam giác đều cạnh bằng 3 và với mỗi số nguyên dương n ≥ 2, tam giác A B C là tam giác trung bình của tam giác A B C n n n. Với mỗi số nguyên dương n, kí hiệu Sn tương ứng là diện tích hình tròn ngoại tiếp tam giác A B C n n n. Tính tổng 1 2 n S S S S.