Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GDĐT Sơn La

giới thiệu đến quý thầy, cô giáo và các em học sinh đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD&ĐT Sơn La; kỳ thi được diễn ra trong hai ngày 18 và 19 tháng 09 năm 2021. Trích dẫn đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD&ĐT Sơn La : + Cho tam giác nhọn ABC không cân nội tiếp đường tròn (O), có đường cao AH và tâm đường tròn nội tiếp là I. Đường thẳng AI cắt đường tròn (O) tại điểm thứ hai M. Gọi M là điểm đối xứng với A qua tâm O. Đường thẳng MA’ cắt các đường thẳng AH, BC theo thứ tự tại N và K. a) Chứng minh tứ giác NHIK nội tiếp đường tròn. b) Đường thẳng A’I cắt lại đường tròn (O) tại điểm thứ hai D, hai đường thẳng AD và BC cắt nhau tại điểm S. Chứng minh rằng nếu AB + AC = 2BC thì I là trọng tâm của tam giác AKS. + Chứng minh rằng nếu số tự nhiên m có dạng 4k + 1 với k > 0 mà biểu diễn được không ít hơn hai cách dưới dạng tổng hai số chính phương thì m là hợp số. + Với số nguyên dương N cho trước, trên bảng có viết tất cả các ước nguyên dương của N. Hai bạn An và Bình chơi một trò chơi với luật như sau: An đi đầu tiên và xóa số N, ở mỗi lượt tiếp theo, các bạn sẽ xóa số là ước hoặc bội của số mà người kia xóa ở lượt trước đó. Ai đến lượt đi của mình mà không thực hiện được nữa thì thua. a) Với N = 2022, chứng minh rằng Bình có cách chơi để thắng. b) Tìm số N nhỏ nhất và N > 2022 sao cho An có cách chơi thắng.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG Toán 12 THPT năm 2018 - 2019 sở GDĐT Đồng Nai
giới thiệu đến bạn đọc nội dung đề thi chọn HSG Toán 12 THPT năm 2018 – 2019 sở GD&ĐT Đồng Nai, kỳ thi được diễn ra vào ngày 18 tháng 01 năm 2019, đề thi được dành cho học sinh khối 12 theo học chương trình chuẩn hệ THPT, đề gồm 06 bài toán tự luận, thời gian làm bài 180 phút, bên dưới là lời giải tham khảo của đề thi này. Trích dẫn đề thi chọn HSG Toán 12 THPT năm 2018 – 2019 sở GD&ĐT Đồng Nai : + Cho hàm số y = 2x^3 – 3(m + 3)x^2 + 18mx + 8, với m là tham số. a) Tìm m để hàm số đã cho đồng biến trên R. b) Tìm m để đồ thị hàm số đã cho có hai điểm cực trị nằm vế hai phía của trục tung. c) Tìm m để giá trị nhô nhất của hàm số đã cho trên đoạn [-1;0] bằng 24. + Chứng minh rằng 3nCn chia hết cho 3 với mọi n nguyên dương. [ads] + Trong một tiết học môn Toán, giáo viên mời ba học sinh A, B, C thực hiện trò chơi chơi như sau: Mỗi bạn A, B, C chọn ngẫu nhiên một số nguyên khác 0 thuộc khoảng (-6;6) và lần lượt thế vào ba tham số của hàm số y = ax^4 + bx^2 + c; nếu đồ thị hàm số thu được có ba điểm cực trị đều nằm phía trên trục hoành thì được nhận thưởng. Tính xác suất để ba học sinh A, B, C được nhận thưởng.
Đề thi chọn HSG cấp tỉnh Toán 12 THPT năm 2018 - 2019 sở GDĐT Lâm Đồng
Đề thi chọn HSG cấp tỉnh Toán 12 THPT năm 2018 – 2019 sở GD&ĐT Lâm Đồng dành cho hệ THPT, kỳ thi được diễn ra vào ngày 18 tháng 01 năm 2019, đề thi có 01 trang với 08 câu tự luận, thời gian làm bài 180 phút, kỳ thi nhằm tuyển chọn các em học sinh khối 12 học theo hệ chương trình THPT giỏi Toán để biểu dương, khen thưởng, đồng thời thành lập đội tuyển học sinh giỏi Toán tỉnh Lâm Đồng, tiếp tục bồi dưỡng, tham dự kỳ thi cấp Quốc gia.
Đề thi chọn học sinh giỏi Quốc gia THPT 2019 môn Toán (ngày thi thứ nhất)
giới thiệu đến thầy, cô và các em nội dung đề thi chọn học sinh giỏi Quốc gia THPT 2019 môn Toán ngày thi thứ nhất (VMO ngày 1), kỳ thi được tổ chức vào Chủ Nhật, ngày 13 tháng 01 năm 2019, đề thi gồm 01 trang với 04 bài toán tự luận, thí sinh có 180 phút để làm bài thi. Trích dẫn đề thi chọn học sinh giỏi Quốc gia THPT 2019 môn Toán (ngày thi thứ nhất) : + Cho tam giác ABC có trực tâm H và tâm đường tròn nội tiếp 1. Trên các tia AB, AC, BC, BA ,CA ,CB lần lượt lấy các điểm A1, A2, B1, B2, C1, C2 sao cho AA1 = AA2 = BC, BB1 = BB2 = CA, CC1 = CC2 = AB. Các cặp đường thẳng (B1B2, C1C2), (C1C2, A1A2), (A1A2, B1B2) lần lượt có các giao điểm là A’, B’, C’. a) Chứng minh rằng diện tích tam giác A’B’C’ không vượt quá diện tích tam giác ABC. b) Gọi J là tâm đường tròn ngoại tiếp tam giác A’B’C’. Các đường thẳng AJ, BJ, CJ lần lượt cắt các đường thẳng BC, CA, AB tại R, S, T tương ứng. Các đường tròn ngoại tiếp các tam giác AST, BTR, CRS cùng đi qua một điểm K. Chứng minh rằng nếu tam giác ABC không cần thì IHJK là hình bình hành. [ads] + Cho hàm số liên tục f: R → (0;+∞) thỏa mãn lim f(x) = lim f(x) = 0. Chứng minh rằng f(x) đạt giá trị lớn nhất trên R. Chứng minh rằng tôn tại hai dãy (xn), (yn) với xn < yn (n = 1, 2 …) sao cho chúng hội tụ tới một giới hạn và thỏa mãn f(x) = f(y) với mọi n.
Đề thi chọn HSG Toán cấp tỉnh THPT năm 2018 sở GD và ĐT Quảng Ninh (Bảng B)
chia sẻ đến các bạn nội dung đề thi và lời giải đề thi chọn HSG Toán cấp tỉnh THPT năm 2018 sở GD và ĐT Quảng Ninh (Bảng B), kỳ thi được diễn ra vào ngày 04 tháng 12 năm 2018, đề gồm 1 trang với 06 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết và thang tính điểm. Trích dẫn đề thi chọn HSG Toán cấp tỉnh THPT năm 2018 sở GD và ĐT Quảng Ninh (Bảng B) : + Một hộ gia đình cần xây dựng một bể chứa nước, dạng hình hộp chữ nhật có thể tích 24 (m3).Tỉ số giữa chiều cao của bể và chiều rộng của bể bằng 4. Biết rằng bể chỉ có các mặt bên và mặt đáy (không có mặt trên). Chiều dài của đáy bể bằng bao nhiêu để xây bể tốn ít nguyên vật liệu nhất. + Có hai chuồng nhốt thỏ, chuồng thứ nhất nhốt 19 con thỏ lông màu đen và 1 con thỏ lông màu trắng. Chuồng thứ hai nhốt 13 con thỏ lông màu đen và 2 con thỏ lông màu trắng. Bắt ngẫu nhiên mỗi chuồng đúng một con thỏ. Tính xác suất để bắt được hai con thỏ có màu lông khác nhau. + Cho hàm số y = x^4 + 2(m + 1)x^2 + m^2 + m – 1, với m là tham số. Tìm các giá trị của m để đồ thị hàm số đã cho có ba điểm cực trị là 3 đỉnh của một tam giác đều. [ads] + Trong mặt phẳng với hệ trục tọa độ Oxy, cho hình chữ nhật ABCD, AB = 2AD. Điểm N thuộc cạnh AB sao cho AN = 1/4.AB, M là trung điểm của DC. Gọi I là giao điểm của MN và BD. Viết phương trình đường tròn ngoại tiếp tam giác BIN. Biết điểm A(2;1), đường thẳng BD có phương trình 11x – 2y + 5 = 0, điểm B có hoành độ là số nguyên. + Cho tam giác ABC có cạnh BC = a, AB = c thỏa mãn √(2a – c).cosB/2 = √(2a + c).sinB/2, với 2a > c. Chứng minh rằng tam giác ABC là tam giác cân.