Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Khai thác tính chất hàm đặc trưng để giải PT - HPT - BPT - Lê Phương Thúy

Trong một vài năm gần đây, việc sử dụng hàm đặc trưng để giải phương trình, bất phương trình và hệ phương trình trong các đề thi đại học, cao đẳng và trong các đề thi học sinh giỏi được sử dụng khá phổ biến. Sáng kiến kinh nghiệm Khai thác tính chất hàm đặc trưng để giải phương trình, bất phương trình và hệ phương trình đại số nhằm giúp học sinh nắm vững phương pháp sử dụng hàm đặc trưng trong giải toán và kết hợp phương pháp này với các phương pháp khác, linh hoạt trong các cách xử lí để giải quyết các dạng toán. Nội dung tài liệu : Phần 1: Thông tin chung về sáng kiến Phần 2: Mô tả sáng kiến 1. Cơ sở lí thuyết 2. Khai thác tính chất hàm đặc trưng để giải phương trình và bất phương trình 2.1 Khai thác tính chất hàm đặc trưng để giải phương trình 2.2 Khai thác tính chất hàm đặc trưng để giải bất phương trình 3. Khai thác tính chất hàm đặc trưng để giải hệ phương trình đại số 4. Bài tập tự luyện Phần 3: Kết luận [ads] Trong phần 2, ở mục 1 nêu lên cơ sở lí thuyết để sử dụng trong bài viết. Mục 2.1 là áp dụng khai thác tính chất hàm đặc trưng để giải phương trình đại số, gồm 12 ví dụ, mức độ khó được tăng dần, sau các bài tập cụ thể sẽ đưa ra được các kĩ năng biến đổi, từ đó học sinh sẽ vận dụng linh hoạt trong các bài tập khác. Mục 2.2 là áp dụng để giải các bất phương trình, gồm 8 ví dụ. Khi đã nắm bắt được các kĩ năng ở mục 2 thì sang mục 3, sẽ giải quyết được cho các bài tập về hệ phương trình, qua đó ta sẽ thấy được việc kết hợp, sáng tạo giữa phương pháp sử dụng hàm đặc trưng với các phương pháp khác như phương pháp đưa về phương trình tích, phương pháp hàm số, phương pháp lượng giác hóa, phương pháp đánh giá …. nhằm hình thành cho học sinh các kĩ năng biến đổi, khả năng so sánh, phân tích và tổng hợp tốt, đồng thời có một tư duy sáng tạo, linh hoạt khi giải toán. Giúp các em có nhiều hưng phấn, say mê tìm tòi nghiên cứu với môn toán học. Và cuối cùng, phần 3 là kết luận và hướng phát triển của đề tài.

Nguồn: toanmath.com

Đọc Sách

Tuyển chọn 410 Hệ phương trình Đại số - Nguyễn Minh Tuấn
Tài liệu gồm 257 trang giải chi tiết 410 bài toán hệ phương trình Đại số, tài liệu được biên soạn bởi tác giả Nguyễn Minh Tuấn. Nội dung tài liệu gồm hai chương: Chương 1 . Một số phương pháp và các loại hệ cơ bản 1.1 Các phương pháp chính để giải hệ phương trình 1. Rút x theo y hoặc ngược lại từ một phương trình 2. Phương pháp thế 3. Phương pháp hệ số bất định 4. Phương pháp đặt ẩn phụ 5. Phương pháp sử dụng tính đơn điệu của hàm số 6. Phương pháp lượng giác hóa 7. Phương pháp nhân chia các phương trình cho nhau 8. Phương pháp đánh giá 9. Phương pháp phức hóa 10. Kết hợp các phương pháp trên [ads] 1.2 Một số loại hệ phưng trình cơ bản 1. Hệ phương trình bậc nhất 2 ẩn 2. Hệ phương trình gồm một phương trình bậc nhất và một phương trình bậc hai 3. Hệ phương trình đối xứng loại I 4. Hệ phương trình đối xứng loại II 5. Hệ đẳng cấp Chương 2 . Tuyển tập những bài hệ đặc sắc
Phương pháp giải Hệ phương trình đối xứng - Phạm Hùng Vương
Chuyên đề là kết quả thu được qua một thời gian học tập và nghiên cứu của bản thân về hệ phương trình. Tuy nhiên có thể nói rằng, đó là sự kết tinh qua nhiều thế hệ, là sự giúp đỡ, là sự học hỏi từ những người bạn của mình cũng như rất nhiều yếu tố khác. Để đạt hiệu quả cao khi tham khảo chuyên đề này, xin được trích dẫn mấy lời của nhà giáo G.Polya: “Một số bài toán có nêu lời giải đầy đủ (tuy vắn tắt), đối với một số bài khác, chỉ vạch ra mấy bước giải đầu tiên, và đôi khi chỉ đưa ra kết quả cuối cùng. Một số bài toán có kèm thêm chỉ dẫn để giúp người đọc giải được dễ dàng hơn. Chỉ dẫn cũng có thể nằm trong những bài toán khác ở gần bài toán đang xét. Nên đặc biệt lưu ý đến những nhận xét mở đầu trước từng bài tập hay cả một nhóm bài tập gặp thấy trong chương. Nếu chịu khó, gắng sức giải một bài toán nào đó thì dù không giải nổi đi chăng nữa, bạn đọc cũng thu hoạch được nhiều điều bổ ích. Chẳng hạn, bạn đọc có thể giở ra xem (ở cuốn sách) phần đầu mỗi lời giải, đem đối chiếu với những suy nghĩ của bản thân mình, rồi gấp sách lại và thử gắng tự lực tìm ra phần còn lại của lời giải. Có lẽ thời gian tốt nhất để suy nghĩ, nghiền ngẫm về phương pháp giải bài toán là lúc bạn vừa tự lực giải xong bài toán hay vừa đọc xong lời giải bài toán trong sách, hay đọc xong phần trình bày phương pháp giải trong sách. Khi vừa hoàn thành xong nhiệm vụ, và các ấn tượng hãy còn “nóng hổi”, nhìn lại những nổ lực vừa qua của mình, bạn đọc có thể phân tích sâu sắc tính chất của những khó khăn đã vượt qua. Bạn đọc đọc có thể tự đặt cho mình nhiều câu hỏi bổ ích: “Khâu nào trong quá trình giải là quan trọng nhất? Khó khăn chủ yếu là ở chỗ nào? Ta có thể làm gì cho tốt hơn? Chi tiết ấy mình cũng đã liếc qua mà không chú ý đến – muốn “nhìn thấy” chi tiết này thì đầu óc phải có tư chất ra sao? Liệu ở đây có một cách gì đó đáng lưu ý để sau này gặp một tình huống tương tự, ta có thể áp dụng được không?” Tất cả những câu hỏi đó đều hay cả, và cũng còn nhiều câu hỏi bổ ích khác nữa, nhưng câu hỏi hay nhất chính là câu hỏi tự nhiên nảy ra trong đầu, không cần ai gợi ý!” [ads] Do thời gian cũng như 1 số vấn đề khác như kiến thức, trình bày … mà chuyên đề này còn khá nhiều khiếm khuyết. Rất mong được các bạn quan tâm và chia sẻ đề hoàn thiện chuyên đề hơn. Hi vọng nó sẽ là tài liệu bổ ích giúp chúng ta vượt qua 1 chẳng nhỏ trong chặng đường chinh phục toán học.
Đặt ẩn phụ để giải Phương trình - Hệ phương trình - Trần Trí Quốc
Tài liệu gồm 43 trang hướng dẫn giải bài toán phương trình, hệ phương trình bằng phương pháp đặt ẩn phụ, tài liệu do tác giả Trần Quốc Trí chủ biên. Nội dung tài liệu: Đặt biểu thức chứa căn bằng biểu thức mới mà ta gọi là ẩn phụ, chuyển về phương trình theo ẩn mới. Giải phương trình ẩn phụ rồi thay vào biểu thức tìm nghiệm ban đầu. Phương pháp: Gồm có các bước sau: + Bước 1: Chọn cách đặt ẩn phụ, tìm điều kiện xác định của ẩn phụ. Để làm tốt bước này phải có sự quan sát, nhận xét mối quan hệ của các biểu thức có mặt trong phương trình rồi đưa ra biểu thức thích hợp để đặt ẩn phụ. + Bước 2: Chuyển phương trình ban đầu về phương trình theo ẩn phụ, thường là nhưng phương trình đã biết cách giải, tìm được nghiệm cần chú ý đến điều kiện của ẩn phụ. + Bước 3: Giải phương trình với ẩn phụ vừa tìm được và kết luận nghiệm. [ads]
Bí kíp giải hệ phương trình bằng Casio - Nguyễn Thế Lực
Tài liệu gồm 22 trang hướng dẫn phương pháp giải hệ phương trình nhờ sựu trợ giúp đắc lực của máy tính Casio, tài liệu được biên soạn bởi tác giả Nguyễn Thế Lực. Nội dung tài liệu : 1.Từ 1 phương trình là đã tìm luôn được quy luật 90% đề thi thử và đề thi Đại học cho dạng này. Biểu hiện: khi cho y nguyên thì x, x^2 tìm được là số nguyên. 2. Phải kết hợp 2 phương trình thì mới tìm ra được quy luật Biểu hiện là cho y nguyên nhưng được x, x2 rất lẻ. Muốn tìm được quy luật giữa x và y của dạng này các em cần kết hợp 2 phương trình như cộng trừ 2 vế để khử số hạng tự do. [ads]