Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hình học không gian cổ điển - Bùi Trần Duy Tuấn

giới thiệu đến thầy, cô và các em học sinh cuốn tài liệu chuyên đề hình học không gian cổ điển do thầy Bùi Trần Duy Tuấn biên soạn, tài liệu gồm 301 trang hệ thống hóa đầy đủ kiến thức, dạng toán thường gặp và các bài tập trắc nghiệm – tự luận có lời giải chi tiết các vấn đề về hình học không gian cổ điển trong chương trình Hình học 11 và Hình học 12. Nội dung tài liệu : I. MỘT SỐ KIẾN THỨC HÌNH HỌC PHẲNG 1. Các đường trong tam giác 2. Tam giác ABC vuông tại A 3. Các hệ thức lượng trong tam giác thường 4. Hai tam giác đồng dạng và định lí Talet 5. Các công thức tính diện tích II. MỘT SỐ PHƯƠNG PHÁP CHỨNG MINH TRONG HÌNH HỌC KHÔNG GIAN 1. Chứng minh đường thẳng vuông góc với mặt phẳng 2. Chứng minh hai đường thẳng vuông góc 3. Chứng minh hai mặt phẳng vuông góc 4. Hai định lí về quan hệ vuông góc 5. Định lí ba đường vuông góc, công thức diện tích hình chiếu CHỦ ĐỀ 1 : KHỐI ĐA DIỆN. PHÉP BIẾN HÌNH TRONG KHÔNG GIAN  A. KHÁI NIỆM VỀ KHỐI ĐA DIỆN 1. Khái niệm về hình đa diện 2. Khái niệm về khối đa diện 3. Phân chia và lắp ghép các khối đa diện. Một số kết quả quan trọng B. PHÉP BIẾN HÌNH TRONG KHÔNG GIAN – HAI HÌNH BẰNG NHAU I. PHÉP DỜI HÌNH TRONG KHÔNG GIAN 1. Phép tịnh tiến theo vectơ v 2. Phép đối xứng qua tâm O 3. Phép đối xứng qua đường thẳng d (phép đối xứng trục d) 4. Phép đối xứng qua mặt phẳng (P). Mặt phẳng đối xứng của một số hình thường gặp II. HAI HÌNH BẰNG NHAU III. PHÉP VỊ TỰ VÀ SỰ ĐỒNG DẠNG CỦA CÁC KHỐI ĐA DIỆN 1. Phép vị tự trong không gian 2. Hai hình đồng dạng C. KHỐI ĐA DIỆN LỒI. KHỐI ĐA DIỆN ĐỀU CHỦ ĐỀ 2 : GÓC TRONG KHÔNG GIAN 1. Góc giữa hai đường thẳng 2. Góc giữa đường thẳng và mặt phẳng 3. Góc giữa hai mặt phẳng [ads] CHỦ ĐỀ 3 : KHOẢNG CÁCH TRONG KHÔNG GIAN 1. Dạng 1: Khoảng cách từ một điểm đến một đường thẳng 2. Dạng 2: Khoảng cách từ một điểm đến một mặt phẳng 3. Dạng 3: Khoảng cách giữa đường thẳng và mặt phẳng song song. Khoảng cách giữa hai mặt phẳng song song 4. Dạng 4: Khoảng cách giữa hai đường thẳng chéo nhau CHỦ ĐỀ 4 : THỂ TÍCH KHỐI ĐA DIỆN A. CÔNG THỨC TÍNH THỂ TÍCH KHỐI ĐA DIỆN 1. Thể tích khối chóp 2. Thể tích khối lăng trụ và khối hộp chữ nhật 3. Một số khái niệm và kỹ thuật cần nắm B. CÁC PHƯƠNG PHÁP VÀ DẠNG TOÁN TÍNH THỂ TÍCH KHỐI ĐA DIỆN 1. Phương pháp tính toán trực tiếp 2. Phương pháp tính thể tích gián tiếp bằng cách phân chia lắp ghép các khối chóp 3. Phương pháp tỷ số thể tích 4. Bài toán min – max thể tích PHẦN MỞ RỘNG: ỨNG DỤNG HÌNH HỌC GIẢI TÍCH KHÔNG GIAN GIẢI HÌNH HỌC KHÔNG GIAN CỔ ĐIỂN  1. Hệ trục tọa độ trong không gian 2. Tọa độ vectơ 3. Tọa độ của điểm 4. Tích có hướng của hai vectơ 5. Vấn đề về góc 6. Vấn đề về khoảng cách CHỦ ĐỀ 5 : NÓN – TRỤ – CẦU A. MẶT NÓN 1. Mặt nón tròn xoay 2. Hình nón tròn xoay 3. Công thức diện tích và thể tích của hình nón 4. Giao tuyến của mặt tròn xoay và mặt phẳng B. MẶT TRỤ 1. Mặt trụ tròn xoay 2. Hình trụ tròn xoay 3. Công thức tính diện tích và thể tích của hình trụ 4. Tính chất C. MẶT CẦU 1. Định nghĩa 2. Vị trí tương đối của một điểm đối với mặt cầu 3. Vị trí tương đối của mặt phẳng và mặt cầu 4. Vị trí tương đối của đường thẳng và mặt cầu 5. Diện tích và thể tích mặt cầu 6. Một số khái niệm về mặt cầu ngoại tiếp khối đa diện

Nguồn: toanmath.com

Đọc Sách

Trắc nghiệm khối tròn xoay có giải chi tiết trong các đề thi thử Toán 2018
Tài liệu gồm 326 trang tổng hợp câu hỏi và bài toán trắc nghiệm khối tròn xoay có giải chi tiết trong các đề thi thử Toán 2018, các câu hỏi và bài tập được phân loại theo các mức độ nhận thức, độ khó sắp xếp từ thấp đến cao, phù hợp với nhiều đối tượng học sinh. Trích dẫn tài liệu trắc nghiệm khối tròn xoay có giải chi tiết trong các đề thi thử Toán 2018 : + (THPT Hậu Lộc 2 – Thanh Hóa – lần 1 – năm 2017 – 2018) Trong các mệnh đề sau, mệnh đề nào đúng? A. Hình chóp có đáy là hình thang vuông thì luôn có mặt cầu ngoại tiếp. B. Hình chóp có đáy là hình thoi thì luôn có mặt cầu ngoại tiếp. C. Hình chóp có đáy là hình tứ giác thì luôn có mặt cầu ngoại tiếp. D. Hình chóp có đáy là hình tam giác thì luôn có mặt cầu ngoại tiếp. [ads] + (THPT Chuyên Lê Quý Đôn – Đà Nẵng năm 2017 – 2018) Để làm một chiếc cốc bằng thủy tinh dạng hình trụ với đáy cốc dày 1,5 cm, thành xung quanh cốc dày 0,2 cm và có thể tích thật (thể tích nó đựng được) là 480π cm3 thì người ta cần ít nhất bao nhiêu 3 cm thủy tinh? + (THPT Hoàng Hoa Thám – Hưng Yên – lần 1 năm 2017 – 2018) Người ta đặt được vào trong một hình nón hai khối cầu có bán kính lần lượt là a và 2a sao cho các khối cầu đều tiếp xúc với mặt xung quanh của hình nón, hai khối cầu tiếp xúc với nhau và khối cầu lớn tiếp xúc với đáy của hình nón. Bán kính đáy của hình nón đã cho là?
240 câu trắc nghiệm khối trụ - khối nón - khối cầu - Phạm Văn Huy
Tài liệu 240 câu trắc nghiệm khối trụ – khối nón – khối cầu của tác giả Phạm Văn Huy gồm 25 trang với phần tóm tắt lý thuyết, công thức tính và bài tập trắc nghiệm, có đáp án. Trích dẫn tài liệu : + Cho hình trụ có có bán kính R. AB, CD lần lượt là hai dây cung song song với nhau và nằm trên hai đường tròn đáy và cùng có độ dài bằng R√2. Mặt phẳng (ABCD) không song song và cũng không chứa trục của hình trụ. Khi đó tứ giác ABCD là hình gì? A. Hình chữ nhật B. Hình bình hành C. Hình vuông D. Hình thoi [ads] + Một cái nồi nấu nước người ta làm dạng hình trụ không nắp chiều cao của nồi 60cm, diện tích đáy là 900π cm2. Hỏi họ cần miếng kim loại hình chữ nhật có chiều dài và chiều rộng là bao nhiêu để làm thân nồi đó? A. Chiều dài 60π cm chiều rộng 60 cm B. Chiều dài 65 cm chiều rộng 60cm C. Chiều dài 180 cm chiều rộng 60cm D. Chiều dài 30π cm chiều rộng 60cm + Cho một hình trụ (H) có trục Δ. Một mặt phẳng (P) song song với trục Δ và cách trục Δ một khoảng k. Nếu k > r thì kết luận nào sau đây là đúng: A. Mp(P) tiếp xúc với mặt trụ theo một đường sinh B. Mp(P) cắt mặt trụ theo hai đường sinh C. Mp(P) cắt mặt trụ theo một đường sinh D. Mp(P) không cắt mặt trụ
Tuyển chọn 500 câu trắc nghiệm hình học không gian - Cao Đình Tới
Tài liệu gồm 77 trang tuyển chọn 500 bài tập trắc nghiệm hình học không gian. Mục lục tài liệu: + KIẾN THỨC Công thức tính thể tích các hình Các kiến thức về tam giác Các kiến thức về tứ giác Công thức tính diện tích các hình Hệ thức lượng trong tam giác vuông Hình chóp tứ giác S.ABCD có đáy ABCD là hình chữ nhật, cạnh bên SA vuông góc với đáy Hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông, cạnh bên SA vuông góc với đáy Hình chóp tứ giác đều S.ABCD Hình chóp tam giác đều S.ABCD Hình chóp tam giác đều S.ABCD Hình chóp có mặt bên vuông góc với đáy Hình chóp có 2 mặt phẳng cùng vuông góc với đáy Xác định tâm và tính bán kính mặt cầu ngoại tiếp hình chóp Các loại khối đa diện đều Một số công thức giải nhanh phần thể tích khối chóp [ads] + CÁC DẠNG BÀI TẬP Hình chóp cho trước đường cao Hình chóp có mặt bên vuông góc với đáy Hình chóp đều Tỉ lệ thể tích Hình chóp nâng cao Khối đa diện Hình nón Hình trụ Mặt cầu Lăng trụ + ĐÁP SỐ
50 câu trắc nghiệm mặt cầu, mặt trụ, mặt nón - Trần Công Diêu
Tài liệu gồm 29 trang tuyển tập 50 bài toán trắc nghiệm chuyên đề mặt cầu, mặt trụ, mặt nón do thầy Trần Công Diêu biên soạn, các bài toán đều có đáp án và được giải chi tiết. Trích dẫn tài liệu : + Cho hình lập phương ABCD.A’B’C’D’. Gọi O’, O là tâm của 2 hình vuông A’B’C’D’ và ABCD và O’O = a. Gọi V1 là thể tích của hình trụ tròn xoay đáy là 2 đường tròn ngoại tiếp các hình vuông ABCD, A’B’C’D’ và V2 là thể tích hình nón tròn xoay đỉnh O’ và đáy là đường tròn nội tiếp hình vuông ABCD. Tỉ số thể tích V1/V2 là? [ads] + Cho ∆ABC vuông cân tại C, nội tiếp trong đường tròn tâm O, đường kính AB. Xét điểm S nằm ngoài mặt phẳng (ABC) sao cho SA, SB, SC tạo với (ABC) góc 45 độ. Hãy chọn câu đúng: A. Hình nón đỉnh S, đáy là đường tròn ngoại tiếp ∆ABC là hình nón tròn xoay B. Thiết diện qua trục của hình nón là tam giác vuông cân C. Khoảng cách từ O đến 2 thiết diện qua đỉnh ( SAC ) và ( SBC ) bằng nhau D. Cả 3 câu trên đều đúng + Cho hình nón tròn xoay có thiết diện qua đỉnh là 1 tam giác vuông cân. Hãy chọn câu sai trong các câu sau: A. Đường cao bằng tích bán kính đáy B. Đường sinh hợp với đáy góc 450 C. Đường sinh hợp với trục góc 450 D. Hai đường sinh tuỳ ý thì vuông góc với nhau