Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán THCS cấp tỉnh năm 2023 - 2024 sở GDĐT Sơn La

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán THCS cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Sơn La; kỳ thi được diễn ra vào ngày 03 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi Toán THCS cấp tỉnh năm 2023 – 2024 sở GD&ĐT Sơn La : + Trong mặt phẳng với hệ trục tọa độ Oxy, cho điểm A(1;3), parabol (P) và đường thẳng (d) có phương trình lần lượt là: y = x2 và y = ax + 3 – a. a) Chứng minh rằng với mọi giá trị của a đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt. Giả sử B và C là hai giao điểm của (d) và (P). Tìm a để AB = 2AC. + Cho đường tròn (O;R) và dây cung BC = R3 cố định. Điểm A di động trên cung lớn BC sao cho tam giác ABC nhọn. Gọi E là điểm đối xứng với B qua AC và F là điểm đối xứng với C qua AB. Các đường tròn ngoại tiếp các tam giác ABE và ACF cắt nhau tại K (K không trùng với A). Gọi H là giao điểm của BE và CF. a) Chứng minh KA là đường phân giác trong của góc BKC. b) Chứng minh tứ giác BHCK nội tiếp. c) Xác định vị trí điểm A để diện tích tứ giác BHCK lớn nhất, tính điện tích lớn nhất của tứ giác đó theo R. d) Chứng minh đường thẳng AK luôn đi qua một điểm cố định.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 - 2023 sở GDĐT Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hải Dương; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thời gian làm bài 150 phút, đề thi có đáp án, lời giải chi tiết và thang chấm điểm; kỳ thi được diễn ra vào thứ Tư ngày 11 tháng 01 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Hải Dương : + Giải phương trình nghiệm nguyên x3 – y3 – 2y2 – 3y – 1 = 0. Tìm số nguyên tố p để 2041 – p2 không chia hết cho 24. + Cho đường tròn (O) đường kính AB, qua A và B lần lượt vẽ các tiếp tuyến d1 và d2 với (O). Từ điểm M bất kỳ trên (O) vẽ tiếp tuyến với đường tròn, cắt d1 tại C và cắt d2 tại D. Kẻ MH vuông góc với AB tại H. a) Chứng minh rằng: AD, BC, MH đồng quy tại trung điểm của MH. b) Đường tròn (O) đường kính CD cắt đường tròn (O) tại E và F (E thuộc cung AM). Chứng minh EF đi qua trung điểm của MH. + Cho tam giác ABC đều cạnh a. Điểm M di động trên đoạn BC. Vẽ ME vuông góc với AB tại E. MF vuông góc với AC tại F. Tính giá trị nhỏ nhất của đoạn EF theo a.
Đề học sinh giỏi huyện Toán 9 năm 2022 - 2023 phòng GDĐT Trà Ôn - Vĩnh Long
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi vòng huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Trà Ôn, tỉnh Vĩnh Long; đề thi được biên soạn theo hình thức tự luận với 06 bài toán, thời gian làm bài 150 phút (không kể thời gian giám thị coi thi phát đề). Trích dẫn Đề học sinh giỏi huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Trà Ôn – Vĩnh Long : + Chứng minh rằng 2^70 + 3^70 chia hết cho 13. Tìm nghiệm nguyên của phương trình: 2(x + y) + 1 = 3xy. + Cho M bất kì trên đường tròn tâm O đường kính AB. Tiếp tuyến tại M và tại B của (O) cắt nhau tại D. Qua O kẻ đường thẳng vuông góc với OD cắt MD tại C và cắt BD tại N. a. Chứng minh rằng B, D, M, O cùng thuộc một đường tròn. b. Chứng minh DC = DN. c. Chứng minh AC là tiếp tuyến của đường tròn tâm O. d. Gọi H là chân đường vuông góc kẻ từ M xuống AB, I là trung điểm của MH. Chứng minh B, C, I thẳng hàng. + Cho các số thực dương x, y, z thỏa mãn x + 2y + 3z ≥ 20. Tìm giá trị nhỏ nhất của biểu thức A = x + y + z + 3/x + 9/2y + 4/z.
Đề học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT thành phố Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Nam Định. Trích dẫn Đề học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT thành phố Nam Định : + Cho đường tròn (O), đường kính BC. Lấy điểm A trên tiếp tuyến tại B của đường tròn đó. Vẽ dây CE của đường tròn (O) song song với OA, BE cắt OA tại H. a) Chứng minh AE là tiếp tuyến của đường tròn (O). b) Tia AO cắt đường tròn (O) tại hai điểm F; K (F nằm giữa O và A). Chứng minh: i) FCO = FCE. ii) AK.CH = KH.CA. + Đường thẳng (d) chia ABC thành hai phần có chu vi và diện tích bằng nhau. Chứng tỏ (d) đi qua tâm đường tròn nội tiếp ABC. + Có 6 chiếc hộp, người ta bỏ vào mỗi hộp một số hạt đậu bất kỳ lần lượt là k1; k2; k3; k4; k5; k6 sao cho k13 + k23 + k33 + k34 + k53 + k63 = 2024. Sau đó thực hiện thuật toán: Mỗi lần thực hiện chọn ngẫu nhiên ba hộp bất kỳ rồi bỏ vào mỗi hộp 1 hạt đậu. Hỏi sau một số lần thực hiện thì số hạt đậu trong 6 hộp có bằng nhau không?
Đề HSG Toán năm 2022 - 2023 phòng GDĐT Phan Rang - Tháp Chàm - Ninh Thuận
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Phan Rang – Tháp Chàm, tỉnh Ninh Thuận; kỳ thi được diễn ra vào Chủ Nhật ngày 08 tháng 01 năm 2023. Trích dẫn Đề HSG Toán năm 2022 – 2023 phòng GD&ĐT Phan Rang – Tháp Chàm – Ninh Thuận : + Cho đa thức f(x) = x3 + ax2 + bx + c trong đó a, b, c là các số thực. Biết rằng đa thức f(x) chia hết cho (x − 1). Tính giá trị biểu thức M = a2023 + b2023 + c2023. + Phòng Giáo dục và Đào tạo Thành phố Phan Rang – Tháp Chàm tổ chức một giải cờ vua cho học sinh nam và nữ cấp THCS. Mỗi kỳ thủ phải thi đấu đủ hai ván với mỗi kỳ thủ còn lại. Biết tham dự giải có 2 kỳ thủ nữ và số ván các kỳ thủ nam đấu với nhau nhiều hơn số ván họ đấu với các kỳ thủ nữ là 66. Hỏi có bao nhiêu kỳ thủ tham gia giải và số ván đấu tất cả các kỳ thủ đã chơi trong giải? + Cho tam giác ABC vuông tại A (AB khác AC), có đường cao AH. Đường phân giác góc AHB cắt AB tại E, đường phân giác góc AHC cắt AC tại F. a) Chứng minh bốn điểm A, E, H, F nằm trên một đường tròn. b) Đường phân giác góc BAC cắt BC tại D. Chứng minh ED vuông góc với AB. c) Gọi I là giao điểm của AH và FD. Chứng minh IC song song với EF.