Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển HSG Toán THPT năm 2021 sở GDĐT Khánh Hòa (Vòng 1)

Thứ Tư ngày 23 tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Khánh Hòa tổ chức kỳ thi chọn đội tuyển thi học sinh giỏi THPT cấp Quốc gia năm 2021 môn Toán (vòng 1). Đề chọn đội tuyển HSG Toán THPT năm 2021 sở GD&ĐT Khánh Hòa (Vòng 1) được biên soạn theo dạng đề thi tự luận, đề gồm 01 trang với 05 bài toán, thời gian học sinh làm bài thi là 180 phút (không kể thời gian phát đề). Trích dẫn đề chọn đội tuyển HSG Toán THPT năm 2021 sở GD&ĐT Khánh Hòa (Vòng 1) : + Cho tam giác nhọn không cân ABC có trực tâm H và nội tiếp đường tròn (O). Gọi E, F lần lượt là chân đường cao hạ từ B, C của tam giác ABC. M là giao điểm của đường tròn ngoại tiếp tam giác AEF với đường tròn (O) (M không trùng A). Đường thẳng BH cắt đường tròn (O) tại D (D không trùng B). I là trung điểm BC. a) Chứng minh rằng ba đường thẳng AM, EF, BC đồng quy tại một điểm. b) Đường tròn ngoại tiếp tam giác HEI cắt BC tại N (N không trùng I). Đường  thẳng EN cắt đường thẳng qua H và song song với BC tại K. Chứng minh rằng bốn điểm M, H, K, D cùng thuộc một đường tròn. + Cho n là một số nguyên dương, xét tập hợp S = {1,2,3,…,n}. Gọi p, q lần lượt là số tập con khác rỗng của S và có số phần tử là chẵn, lẻ. Chứng minh rằng p – q =  -1. + Cho m, n là các số nguyên dương và một bảng hình chữ nhật kẻ ô vuông cóm hàng và n cột (nghĩa là bảng gồm m x n ô vuông). Xét các tập hợp T khác  rỗng gồm một số các ô vuông thuộc bảng trên sao cho mỗi hàng và mỗi cột của bảng đều có chứa ít nhất một ô vuông của T. Gọi p là số các tập hợp T có số phần tử là số chẵn và q là số các tập hợp T có số phần tử là số lẻ. Chứng minh rằng p – q =  (-1)m+n+1.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG lớp 12 cấp trường năm học 2017 - 2018 môn Toán trường Trần Hưng Đạo - Vĩnh Phúc
Đề thi chọn HSG lớp 12 cấp trường năm học 2017 – 2018 môn Toán trường THPT Trần Hưng Đạo – Vĩnh Phúc gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Trong mặt phẳng với hệ trục tọa độ Oxy, cho hình chữ nhật ABCD có A(5, -7), điểm C thuộc đường thẳng có phương trình (d1): x – y + 4 = 0. Đường thẳng đi qua D và trung điểm của đoạn AB có phương trình (d2): 3x – 4y – 23 = 0. Tìm tọa độ của B và C, biết điểm B có hoành độ dương. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a góc BAD = 60 độ, hình chiếu vuông góc của S trên mặt phẳng (ABCD) trùng với điểm G là trọng tâm tam giác BCD. Góc giữa SA và mặt phẳng (ABCD) bằng 60 độ. Tính thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng DC và SA theo a. + Cho A là tập hợp các số tự nhiên có 6 chữ số đôi một khác nhau lập được từ các chữ số 0, 2, 3, 5, 6, 8. Lấy ngẫu nhiên một số thuộc tập A. Tính xác suất để số lấy được có chữ số 0 và chữ số 5 không đứng cạnh nhau.
Đề thi chọn HSG cấp huyện lớp 12 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Cao Bằng
Đề thi chọn HSG cấp huyện lớp 12 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Cao Bằng gồm 1 trang với 7 bài toán tự luận, thời gian làm bài 180 phút (không kể thời gian giao đề), đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Một trường trung học phổ thông có 12 học sinh giỏi gồm ba học sinh khối 10, bốn học sinh khối 11 và năm học sinh khối 12. Chọn sáu học sinh trong số học sinh giỏi đó, tính xác suất sao cho cả ba khối đều có học sinh được chọn. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy, góc giữa mặt phẳng (SBD) và mặt phẳng đáy bằng 60 độ. [ads] a. Tính thể tích khối chóp S.ABCD b. Tính khoảng cách từ điểm D đến mặt phẳng (SBC) + Trong mặt phẳng với hệ tọa độ Oxy, cho hình bình hành ABCD. Điểm M (-3; 0) là trung điểm của cạnh AB, điểm H(0; -1) là hình chiếu vuông góc của B trên AD và điểm G(4/3; 3) là trọng tâm của tam giác BCD. Tìm tọa độ các điểm B, D.
Đề thi học sinh giỏi môn Toán 12 năm học 2017 - 2018 trường THPT Đan Phượng - Hà Nội
Đề thi học sinh giỏi môn Toán 12 năm học 2017 – 2018 trường THPT Đan Phượng – Hà Nội gồm 5 bài toán tự luận, thời gian làm bài 180 phút. Đề thi có đáp án, lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Cho hàm số: y = (x – 1)/2(x + 1) (C). Tìm những điểm M trên (C) sao cho tiếp tuyến với (C) tại M tạo với hai trục tọa độ một tam giác có trọng tâm nằm trên đường thẳng 4x + y = 0. [ads] + Cho hàm số y = x^3 – 3(m+1)x – 2 với m là tham số. Tìm các giá trị của m để đồ thị hàm số cắt trục Ox tại một điểm. + Cho tam giác ABC vuông tại A, D là một điểm nằm trong tam giác ABC sao cho CD = CA. M là một điểm trên cạnh AB sao cho góc BDM = 1/2.ACD, N là giao điểm của MD và đường cao AH của tam giác ABC. Chứng minh DM = DN. + Cho tam giác ABC cân tại A có AB = AC = a, góc BAC = 120 độ. Điểm S thay đổi trong không gian nhưng luôn nằm về 1 phía của mặt phẳng (ABC) và AS = a, góc SAB = 60 độ. Gọi H là hình chiếu của S trên mặt phẳng (ABC). a) Chứng minh rằng H thuộc đường thẳng cố định. b) Chứng minh rằng khi độ dài SH lớn nhất thì hai mặt phẳng (SAB) và (ABC) vuông góc với nhau và khi đó tính độ dài SC.
Đề thi chọn học sinh giỏi cấp tỉnh Toán 12 năm học 2017 - 2018 sở GD và ĐT Thái Nguyên
Đề thi chọn học sinh giỏi cấp tỉnh Toán 12 năm học 2017 – 2018 sở GD và ĐT Thái Nguyên gồm 5 bài toán tự luận, thời gian làm bài 180 phút. Kỳ thi diễn ra vào ngày 12/10/2017.