Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Lý thuyết, các dạng toán và bài tập phương pháp tọa độ trong mặt phẳng

Tài liệu gồm 86 trang, tóm tắt lý thuyết, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phương pháp tọa độ trong mặt phẳng, giúp học sinh lớp 10 tham khảo khi học chương trình Hình học 10 chương 3 (Toán 10). 1. PHƯƠNG TRÌNH TỔNG QUÁT VÀ PHƯƠNG TRÌNH THAM SỐ CỦA ĐƯỜNG THẲNG I. Tóm tắt lí thuyết. 1. Véc-tơ chỉ phương của đường thẳng. 2. Phương trình tham số của đường thẳng. 3. Phương trình chính tắc của đường thẳng. 4. Véc-tơ pháp tuyến của đường thẳng. 5. Phương trình tổng quát của đường thẳng. II. Các dạng toán. Dạng 1. Viết phương trình tham số của đường thẳng. Dạng 2. Viết phương trình tổng quát của đường thẳng. Dạng 3. Vị trí tương đối và góc giữa hai đường thẳng. Dạng 4. Khoảng cách từ một điểm đến một đường thẳng. Dạng 5. Viết phương trình đường phân giác của góc do ∆1 và ∆2 tạo thành. Dạng 6. Phương trình đường thẳng trong tam giác. 2. PHƯƠNG TRÌNH ĐƯỜNG TRÒN I. Tóm tắt lý thuyết. 1. Phương trình đường tròn khi biết tâm và bán kính. 2. Dạng khác của phương trình đường tròn. 3. Phương trình tiếp tuyến của đường tròn. II. Các dạng toán. Dạng 1. Tìm tâm và bán kính đường tròn. Dạng 2. Lập phương trình đường tròn. Dạng 3. Viết phương trình tiếp tuyến của đường tròn tại một điểm. Dạng 4. Viết phương trình tiếp tuyến của đường tròn đi một điểm. Dạng 5. Viết phương trình tiếp tuyến của đường tròn thỏa mãn điều kiện cho trước. Dạng 6. Vị trí tương đối của đường thẳng và đường tròn. Dạng 7. Vị trí tương đối của hai đường tròn. Dạng 8. Phương trình đường thẳng chứa tham số. Dạng 9. Phương trình đường tròn chứa tham số. Dạng 10. Tìm tọa độ một điểm thỏa một điều kiện cho trước. 3. ĐƯỜNG ELIP I. Tóm tắt lí thuyết. 1. Định nghĩa. 2. Phương trình chính tắc của Elip. 3. Hình dạng của elip. II. Các dạng toán. Dạng 1. Xác định các yếu tố của elip. Dạng 2. Viết phương trình đường Elip. Dạng 3. Tìm điểm thuộc elip thỏa điều kiện cho trước. 4. ĐỀ KIỂM TRA CHƯƠNG 3 I. Đề số 1a. II. Đề số 1b. III. Đề số 2a. IV. Đề số 2b. V. Đề số 3a. VI. Đề số 3b.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề phương pháp tọa độ trong mặt phẳng - Trần Văn Tài
Tài liệu gồm 121 trang tóm tắt lý thuyết và tuyển chọn các bài tập trắc nghiệm phương trình đường thẳng và phương trình đường tròn trong chuyên đề phương pháp tọa độ trong mặt phẳng (Hình học 10 chương 3), tài liệu được biên soạn bởi thầy Trần Văn Tài, các bài tập có đáp án và lời giải chi tiết. Nội dung tài liệu : A – PHƯƠNG TRÌNH ĐƯỜNG THẲNG Vấn đề 1. Lập phương trình của đường thẳng Vấn đề 2. Các bài toán dựng tam giác, sự tương giao, khoảng cách và góc 1. Các bài toán dựng tam giác Đó là các bài toán xác định toạ độ các đỉnh hoặc phương trình các cạnh của một tam giác khi biết một số yếu tố của tam giác đó. Để giải loại bài toán này ta thường sử dụng đến các cách dựng tam giác. Ta thường gặp một số loại cơ bản sau đây: + Loại 1. Dựng ΔABC, khi biết các đường thẳng chứa cạnh BC và hai đường cao BB’, CC’ + Loại 2. Dựng ΔABC, khi biết đỉnh A và hai đường thẳng chứa hai đường cao BB’, CC’ + Loại 3. Dựng ΔABC, khi biết đỉnh A, 2 đường thẳng chứa 2 đường trung tuyến BM, CN. + Loại 4. Dựng ΔABC, khi biết hai đường thẳng chứa hai cạnh AB, AC và trung điểm M của cạnh BC 2. Vị trí tương đối – khoảng cách – góc [ads] Vấn đề 3. Một số bài toán cơ bản trong tam giác + Dạng 1. Tìm điểm M’ đối xứng với điểm M qua đường thẳng d . Ax + By + C = 0 + Dạng 2. Lập phương trình đường thẳng d’ đối xứng với đường thẳng d qua đường thẳng Δ + Dạng 3. Lập phương trình đường thẳng d’ đối xứng với đường thẳng d qua điểm I + Dạng 4. Lập phương trình các đường phân giác của các góc tạo bởi hai đường thẳng B – PHƯƠNG TRÌNH ĐƯỜNG TRÒN + Nhóm 1. Xác định tâm và bán kính đường tròn + Nhóm 2. Lập phương trình đường tròn + Nhóm 3. Tập hợp điểm (quỹ tích tâm đường tròn) + Nhóm 4. Vị trí tương đối của đường thẳng và đường tròn + Nhóm 5. Vị trí tương đối của hai đường tròn + Nhóm 6. Tiếp tuyến của đường tròn + Nhóm 7. Xét vị trí tương đối của đường thẳng và đường tròn để giải hệ phương trình – hệ bất phương trình
Chuyên đề phương pháp tọa độ trong mặt phẳng - Nguyễn Bảo Vương
Tài liệu gồm 165 trang với lý thuyết, phân dạng và bài tập trắc nghiệm các dạng toán phương pháp tọa độ trong mặt phẳng tài liệu do thầy Nguyễn Bảo Vương biên soạn. + Phần 1. Phương trình tổng quát của đường thẳng + Phần 2. Phương trình tham số của đường thẳng + Phần 3. Khoảng cách và góc + Phần 4. Đường tròn [ads] + Phần 5. Đường elip + Phần 6. Đường hypebol + Phần 7. Đường parabol + Phần 8. Ba đường cônic + Phần 9. Bài tập tổng hợp phương pháp tọa độ trong mặt phẳng
Phương pháp trắc nghiệm hình học giải tích mặt phẳng và không gian - Mộng Hy, Thế Cấp
Cuốn sách gồm 247 trang gồm lý thuyết, phương pháp giải toán và các bài tập trắc nghiệm có lời giải chi tiết chủ đề hình học giải tích. Cuốn sách gồm 10 chuyên đề được chia làm 2 phần: phần 1 là phần hình học giải tích trong mặt phẳng do TS. Đậu Thế Cấp biên soạn, phần 2 là phần hình học giải tích trong không gian do PGS.TS Nguyễn Mộng Hy biên soạn. Cuối cùng có phần trắc nghiệm giúp người đọc hoàn thiện hơn kiến thức của mình. Phần 1. Hình học giải tích trong mặt phẳng Chuyên đề 1. Vectơ và tọa độ trong mặt phẳng Chuyên đề 2. Đường thẳng trong mặt phẳng Chuyên đề 3. Đường tròn Chuyên đề 4. Elip Chuyên đề 5. Hypebol Chuyên đề 6. Parabol [ads] Phần 2. Hình học giải tích trong không gian Chuyên đề 7. Vectơ tọa độ trong không gian Chuyên đề 8. Mặt phẳng Chuyên đề 9. Đường thẳng trong không gian Chuyên đề 10. Mặt cầu
Vận dụng tính chất hình phẳng để giải bài toán Oxy liên quan đến đường tròn - Trần Duy Thúc
Tài liệu gồm 38 trang hướng dẫn vận dụng tính chất hình phẳng để giải bài toán Oxy liên quan đến đường tròn, tài liệu do thầy Trần Duy Thúc biên soạn. Câu hình học phẳng Oxy chắc chắn xuất trong đề thi THPT Quốc Gia hàng năm. Nhằm đáp ứng xu hướng ra đề mới của Bộ Giáo Dục và Đào Tạo về nội dung của câu này. Thầy biên soạn tài liệu này với mục đích giúp các em có thể chinh phục được câu hình học phẳng liên quan tới đường tròn (Dạng bài thường xuất hiện trong những năm gần đây). Từ đó xây dựng lòng tin để có thể đạt kết quả tốt nhất trong kì thi. [ads] Tài liệu được chia ra thành 4 phần: + Phần 1. Một số kiến thức cần nhớ. + Phần 2. Rèn luyện kỉ năng chứng minh và vận dụng tính chất biết trước để giải bài toán. + Phần 3. Rèn luyện tư duy phân tích,dự đoán tính chất và chứng minh. + Phần 4. Bài tập tự rèn luyện.