Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT thành phố Vinh - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi khảo sát chất lượng học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT thành phố Vinh – Nghệ An : + Cho các số nguyên abc thoả mãn ab bc ca 1. Chứng minh rằng 2 2 2 A a b c là số chính phương. Gọi S n là tổng các chữ số của số nguyên dương n khi biểu diễn nó trong hệ thập phân. Biết rằng với bất kỳ số nguyên dương n ta có 0 S n n. Tìm số nguyên dương n thỏa mãn 2 S n n 2023 7. + Tìm các hệ số abc để đa thức 3 2 f x x ax bx c chia hết cho đa thức x 2 và chia cho đa thức 2 x 1 thì dư 3. Cho a b c d e là các số thực dương thỏa mãn a b c d e 4. Tìm giá trị nhỏ nhất của biểu thức a b c d a b c a b P abcde. + Cho tam giác ABC có ba góc nhọn AB AC trung tuyến AM. Kẻ BE vuông góc với AM. Trên đoạn MC lấy điểm F sao cho MFA MEC. Gọi N I lần lượt là trung điểm của đoạn thẳng AF EC AF cắt CE ở O. Chứng minh rằng OEF đồng dạng với OAC. Biết tỷ số 1 2 AM BC tính tỷ số MN MI. Chứng minh rằng NB NC. Cho hình thang cân ABCD AB CD. Gọi M N lần lượt là trung điểm của AB và CD. Trên tia đối của tia DA lấy điểm E, tia EN cắt đoạn thẳng AC tại F. Chứng minh rằng MN là tia phân giác của góc EMF.

Nguồn: toanmath.com

Đọc Sách

Đề Olympic 27 tháng 04 Toán 8 năm 2022 - 2023 sở GDĐT Bà Rịa - Vũng Tàu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic 27 tháng 04 môn Toán 8 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào ngày 23 tháng 03 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề Olympic 27 tháng 04 Toán 8 năm 2022 – 2023 sở GD&ĐT Bà Rịa – Vũng Tàu : + Cho tam giác ABC vuông tại A (AB AC) có đường cao AH và đường phân giác AM. Kẻ ME vuông góc với AB tại E và MF vuông góc với AC tại F. Gọi K là giao điểm của AH và ME. Tia BK cắt AC tại L. 1) Chứng minh CM CH CF CA và HF là tia phân giác của góc AHC. 2) Chứng minh tam giác BML cân. 3) Chứng minh BE HB CF HC. + Cho góc xOy nhọn và điểm A cố định nằm trong góc xOy. Đường thẳng d di động đi qua A và cắt Ox Oy theo thứ tự tại B C. Tìm điều kiện của đường thẳng d đối với OA để 1 1 AB AC đạt giá trị lớn nhất. + Tìm tất cả các số nguyên dương n sao cho 2 n 2020 chia hết cho n 45. Cho x và y là các số hữu tỉ khác 1 và thỏa mãn 1 2 1 2 1 1 1 x y x y.
Đề giao lưu HSG Toán 8 năm 2022 - 2023 phòng GDĐT Lang Chánh - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Lang Chánh, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 01 tháng 04 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu HSG Toán 8 năm 2022 – 2023 phòng GD&ĐT Lang Chánh – Thanh Hóa : + Giải phương trình nghiệm nguyên dương: 2 2 x y xy 3. Cho x y là các số nguyên thỏa mãn đẳng thức 2 2 3 12 1 x y. Chứng minh rằng 2 2 x y chia hết cho 40. + Cho đoạn thẳng AB. Kẻ tia Bx vuông góc với AB tại B. Trên tia Bx lấy điểm C (C khác B). Kẻ BH vuông góc với AC (điểm H thuộc AC). Gọi M là trung điểm của AB. 1. Chứng minh rằng: HA.HC = HB2 2. Kẻ HD vuông góc với BC (D thuộc BC). Gọi I là giao điểm của AD và BH. Chứng minh rằng ba điểm C, I, M thẳng hàng. 3. Giả sử AB cố định, điểm C thay đổi trên tia Bx. Biết 1 BM AB HA CH IC MI. Tìm vị trí của điểm C trên tia Bx sao cho diện tích tam giác ABI lớn nhất. + Cho các số abc không âm thỏa mãn abc 3. Tìm giá trị nhỏ nhất của biểu thức 333.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Đông Hưng - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chọn nguồn học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Đông Hưng, tỉnh Thái Bình. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Đông Hưng – Thái Bình : + Cho x, y, z thoả mãn: 2 2 2 2x 4y z 4xy 4x 2z 5 0. Tính giá trị của biểu thức: x 20 2023 Q 10 y z. + Tìm đa thức dư khi chia đa thức f (x) cho 2 x x 6 biết đa thức f (x) chia cho (x 2) dư (-12); đa thức f (x) chia cho (x 3) dư 28. + Cho hình vuông ABCD có cạnh bằng a, gọi O là giao điểm của hai đường chéo. Trên cạnh AB lấy điểm I, trên cạnh BC lấy điểm M sao cho 0 IOM 90 (I và M không trùng với các đỉnh hình vuông). Gọi N là giao điểm của AM và DC, K là giao điểm của OM và BN. a) Chứng minh rằng: BI CM và tính diện tích tứ giác BIOM theo a. b) Chứng minh rằng: IM // BN và OM.MK MB.MC. c) Trên cạnh DC lấy điểm E sao cho 0 MAE 45. Chứng minh chu vi tam giác CME không đổi khi điểm I di chuyển trên cạnh AB và luôn có 0 IOM 90.
Đề giao lưu HSG Toán 8 năm 2022 - 2023 phòng GDĐT Thanh Hà - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Thanh Hà, tỉnh Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu HSG Toán 8 năm 2022 – 2023 phòng GD&ĐT Thanh Hà – Hải Dương : + Cho đoạn thẳng AB, M là một điểm nằm giữa A và B. Vẽ về một phía của AB các hình vuông AMCD, BMEF. Gọi H là giao điểm của AE và BC. 1) Chứng minh AME CMB và AE BH. 2) Gọi O và O’ lần lượt là giao điểm hai đường chéo của hình vuông AMCD, BMEF. Chứng minh ba điểm D, H, F thẳng hàng. 3) Chứng minh đường thẳng DF luôn đi qua một điểm cố định khi M di chuyển trên đoạn thẳng cố định AB. + Xác định các số a, b để đa thức f x x ax b 3 2 2 chia hết cho đa thức 1 2 g x x. + Tìm giá trị nhỏ nhất của biểu thức: 2 2 B xy x 2 y 6 12x 24x 3y 18y 2053.