Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề số vô tỉ, căn bậc hai số học lớp 7 môn Toán

Nội dung Chuyên đề số vô tỉ, căn bậc hai số học lớp 7 môn Toán Bản PDF - Nội dung bài viết Phần I: Tóm Tắt Lí ThuyếtPhần II: Các Dạng BàiPhần III: Bài Tập Tự Luyện **Chuyên Đề Số Vô Tỉ, Căn Bậc Hai Lớp 7 - Môn Toán** Chuyên đề số vô tỉ, căn bậc hai lớp 7 toán học là tài liệu học tập đầy đủ và chi tiết, bao gồm 29 trang chứa tóm tắt lí thuyết và hướng dẫn cách giải các dạng bài tập phổ biến trong chương trình môn Toán lớp 7. Phần I: Tóm Tắt Lí Thuyết Phần này tổng hợp các kiến thức cơ bản về số vô tỉ và căn bậc hai, giúp học sinh hiểu rõ về các tính chất và quy tắc trong cách tính toán. Phần II: Các Dạng Bài 1. Tính Căn Bậc Hai: Hướng dẫn cụ thể về cách tính các giá trị căn bậc hai và thực hiện các phép tính liên quan đến chúng. 2. Tìm X: Sử dụng các tính chất cơ bản để giải bài toán tìm giá trị của x trong các phương trình căn bậc hai. 3. So Sánh Các Căn Bậc Hai: Hướng dẫn cách so sánh giữa các căn bậc hai và áp dụng các quy tắc để giải quyết bài toán. 4. Tìm Giá Trị Lớn Nhất và Nhỏ Nhất: Chi tiết hướng dẫn để tìm ra giá trị lớn nhất và nhỏ nhất của biểu thức chứa căn bậc hai. 5. Tìm Giá Trị Nguyên Của X: Bài toán tìm điều kiện của x để biểu thức nhận giá trị nguyên, với các bước thực hiện cụ thể. Phần III: Bài Tập Tự Luyện Phần này cung cấp bài tập tự luyện để học sinh có thêm cơ hội ôn tập và rèn luyện kỹ năng giải các bài tập liên quan đến số vô tỉ và căn bậc hai. Với tài liệu này, học sinh sẽ dễ dàng nắm vững kiến thức và tự tin giải quyet các bài toán trong chuyên đề này. Chúc các em học tốt!

Nguồn: sytu.vn

Đọc Sách

Chuyên đề trường hợp bằng nhau thứ ba của tam giác góc - cạnh - góc (g.c.g)
Tài liệu gồm 15 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc (g.c.g), có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 2: Tam giác. Mục tiêu : Kiến thức: + Nắm được cách vẽ tam giác biết một cạnh và hai góc kề. + Phát biểu và hiểu được trường hợp bằng nhau góc – cạnh – góc. + Phát biểu và nắm được các hệ quả của trường hợp góc – cạnh – góc trong tam giác vuông. Kĩ năng: + Vẽ thành thạo một tam giác khi biết một cạnh và hai góc kề. + Phát hiện và chứng minh được hai tam giác bằng nhau theo trường hợp góc – cạnh – góc. + Biết vận dụng một cách linh hoạt giữa các trường hợp bằng nhau của hai tam giác để chứng minh hai tam giác bằng nhau, hai đoạn thẳng (góc) bằng nhau. + Biết trình bày và lập luận chặt chẽ trong bài toán chứng minh hai tam giác bằng nhau, hai góc (đoạn thẳng) bằng nhau. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Vẽ tam giác biết một cạnh và hai góc kề. Dạng 2: Chứng minh hai tam giác bằng nhau theo trường hợp góc – cạnh – góc. Dạng 3: Chứng minh hai đoạn thẳng bằng nhau. Dạng 4: Sử dụng nhiều trường hợp bằng nhau của tam giác.
Chuyên đề trường hợp bằng nhau thứ hai của tam giác cạnh - góc - cạnh (c.g.c)
Tài liệu gồm 14 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề trường hợp bằng nhau thứ hai của tam giác: cạnh – góc – cạnh (c.g.c), có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 2: Tam giác. Mục tiêu : Kiến thức: + Nắm được cách vẽ tam giác biết hai cạnh và một góc xen giữa. + Phát biểu và hiểu được trường hợp bằng nhau cạnh – góc – cạnh. + Phát biểu và nắm được hệ quả của trường hợp cạnh – góc – cạnh trong tam giác vuông. Kĩ năng: + Vẽ thành thạo một tam giác khi biết hai cạnh và góc xen giữa. + Phát hiện và chứng minh được hai tam giác bằng nhau theo trường hợp cạnh – góc – cạnh. + Chứng minh hai góc tương ứng bằng nhau thông qua chứng minh hai tam giác bằng nhau thông qua chứng minh hai tam giác bằng nhau. + Biết trình bày và lập luận chặt chẽ trong bài toán chứng minh hai tam giác bằng nhau, hai góc (đoạn thẳng) bằng nhau. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Vẽ một tam giác khi biết độ dài hai cạnh và góc xen giữa. Dạng 2: Chứng minh hai tam giác bằng nhau theo trường hợp cạnh – góc – cạnh. Dạng 3: Chứng minh hai đoạn thẳng hoặc hai góc bằng nhau.
Chuyên đề trường hợp bằng nhau thứ nhất của tam giác cạnh - cạnh - cạnh (c.c.c)
Tài liệu gồm 10 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề trường hợp bằng nhau thứ nhất của tam giác: cạnh – cạnh – cạnh (c.c.c), có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 2: Tam giác. Mục tiêu : Kiến thức: + Nắm được cách vẽ một tam giác khi biết độ dài ba cạnh. + Nắm được trường hợp bằng nhau cạnh – cạnh – cạnh của hai tam giác. Kĩ năng: + Biết vẽ một tam giác khi biết ba cạnh của nó. + Nhận biết và chứng minh được hai tam giác bằng nhau theo trường hợp cạnh – cạnh – cạnh. + Chứng minh các góc tương ứng bằng nhau thông qua chứng minh hai tam giác bằng nhau. + Biết trình bày và lập luận chặt chẽ trong bài toán chứng minh hai tam giác bằng nhau, hai góc bằng nhau. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Vẽ tam giác khi biết ba cạnh. Dạng 2: Tìm hoặc chứng minh hai tam giác bằng nhau theo trường hợp cạnh – cạnh – cạnh. Dạng 3: Sử dụng trường hợp bằng nhau cạnh – cạnh – cạnh để chứng minh hai góc bằng nhau.
Chuyên đề hai tam giác bằng nhau
Tài liệu gồm 11 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề hai tam giác bằng nhau, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 2: Tam giác. Mục tiêu : Kiến thức: + Hiểu được định nghĩa hai tam giác bằng nhau, viết đúng kí hiệu hai tam giác bằng nhau (viết đúng thứ tự đỉnh). + Biết sử dụng định nghĩa hai tam giác bằng nhau để suy ra cặp cạnh (góc) tương ứng bằng nhau. Kĩ năng: + Nhận biết hai tam giác bằng nhau. Viết đúng kí hiệu về sự bằng nhau của các tam giác. + Tìm được cặp cạnh (góc) tương ứng bằng nhau từ hai tam giác bằng nhau. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Viết kí hiệu về sự bằng nhau của hai tam giác. Dạng 2: Chứng minh các cạnh, các góc tương ứng bằng nhau. Dạng 3: Tính độ dài các đoạn thẳng, các số đo góc và chu vi tam giác.