Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào năm 2023 2024 phòng GD ĐT Nghi Lộc Nghệ An

Nội dung Đề thi thử Toán vào năm 2023 2024 phòng GD ĐT Nghi Lộc Nghệ An Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2023 - 2024 phòng GD ĐT Nghi Lộc Nghệ An Đề thi thử Toán vào năm 2023 - 2024 phòng GD ĐT Nghi Lộc Nghệ An Xin chào quý thầy, cô giáo và các em học sinh lớp 9. Đây là đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 - 2024 của phòng Giáo dục và Đào tạo huyện Nghi Lộc, tỉnh Nghệ An. Đề thi bao gồm đáp án và hướng dẫn chấm điểm. Đề thi bắt đầu bằng một bài toán về việc chuẩn bị ghế ngồi cho đại biểu tại Đại hội Công đoàn huyện Nghi Lộc. Người ta cần phải chia đúng 300 ghế vào các dãy sao cho nếu bớt 3 ghế ở mỗi dãy và thêm 5 dãy mới thì số ghế không thay đổi. Hỏi ban đầu, số ghế cần chia là bao nhiêu dãy? Bài toán tiếp theo liên quan đến việc sơn bề mặt ngoài của một bồn chứa xăng hình trụ. Để sơn được 1kg thì có thể sơn được 8m². Hỏi cần bao nhiêu kg sơn để sơn hết bề mặt ngoài của bồn chứa xăng? (Lấy pi = 3.14, kết quả làm tròn đến chữ số thập phân thứ hai sau dấu phẩy.) Bài toán cuối cùng là một bài toán hình học phức tạp về tứ giác và đường tròn. Bạn cần chứng minh những điều sau: a) Tứ giác AMON nội tiếp, b) NT // PQ, c) 2 OF OH IF KH. Bài toán này đòi hỏi bạn phải áp dụng kiến thức về tỉ số đẳng thức trong hình học để giải quyết. Hy vọng rằng đề thi thử này sẽ giúp các em ôn tập và chuẩn bị tốt cho kỳ thi tuyển sinh vào lớp 10. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán trường THCS Lương Thế Vinh - TP. HCM
Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán trường THCS Lương Thế Vinh – TP. HCM gồm 6 bài tập tự luận, đề thi có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn (O; R) và điểm M nằm ngoài (O). Vẽ 2 tiếp tuyến MA, MB và cát tuyến MCD của (O) (A, B là tiếp điểm, C nằm giữa M và D; A và C nằm khác phía đối với đường thẳng MO). Gọi I là trung điểm CD. [ads] a) Chứng minh: MB^2 = MC.MD b) Chứng minh tứ giác AOIB nội tiếp c) Tia BI cắt (O) tại J. Chứng minh: AD^2 = AJ.MD d) Đường thẳng qua I song song với DB cắt AB tại K, tia CK cắt OB tại G. Tính bán kính đường tròn ngoại tiếp ∆CIG theo R + Hàng tháng một người gửi vào ngân hàng 5.000.000đ với lãi suất 0,6%/tháng. Hỏi sau 15 tháng người đó nhận được số tiền cả gốc lẫn lãi là bao nhiêu? Biết rằng hàng tháng người đó không rút lãi ra.
Tuyển chọn các đề thi tuyển sinh vào lớp 10 môn Toán - Nguyễn Hoàng Nam
+ Được tuyển chọn từ tổng hợp các đề thi hay nhất của các tỉnh thành phố năm học 2013 – 2014. + Có bổ sung một số câu hỏi trọng tâm thường ra thi. + Các bài hình học khó đều có hình vẽ sẵn, được ký hiệu và ghi sơ đồ để hướng dẫn học sinh suy nghĩ.
Tuyển tập 21 đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán
Tài liệu gồm 32 trang tuyển tập 21 đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán. Một số đề có hướng dẫn giải.
Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán Phòng GD và ĐT Tam Đảo - Vĩnh Phúc lần 1
Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán Phòng GD và ĐT Tam Đảo – Vĩnh Phúc lần 1 gồm 4 câu hỏi trắc nghiệm và 5 câu tự luận, có đáp án và lời giải chi tiết. Trích một số bài toán trong đề: + Hai vòi nước cùng chảy vào một cái bể không có nước thì trong 5 giờ sẽ đầy bể. Nếu vòi thứ nhất chảy trong 3 giờ và vòi thứ 2 chảy trong 4 giờ thì được 2/3 bể nước. Hỏi nếu mỗi vòi chảy một mình thì trong bao lâu mới đầy bể. [ads] + Cho đường tròn (O), M là một điểm nằm ngoài đường tròn (O). Qua M kẻ hai tiếp tuyến MA, MB đến đường tròn (O) với A, B là các tiếp điểm; MPQ là một cát tuyến không đi qua tâm của đường tròn (O), P nằm giữa M và Q. Qua P kẻ đường thẳng vuông góc với OA cắt AB, AQ tương ứng tại R, S. Gọi trung điểm đoạn PQ là N. Chứng minh rằng: a) Các điểm M, A, N, O, B cùng thuộc một đường tròn, chỉ rõ bán kính của đường tròn đó. b) PR = RS.