Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 2 (HK2) lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Chương Mỹ Hà Nội

Nội dung Đề cuối học kì 2 (HK2) lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Chương Mỹ Hà Nội Bản PDF - Nội dung bài viết Đề Cuối Học Kì 2 Toán Lớp 9 Năm Học 2022 - 2023 Phòng GD&ĐT Chương Mỹ Hà Nội Đề Cuối Học Kì 2 Toán Lớp 9 Năm Học 2022 - 2023 Phòng GD&ĐT Chương Mỹ Hà Nội Sytu xin gửi đến quý thầy cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kì 2 môn Toán năm học 2022 - 2023 của phòng Giáo dục và Đào tạo huyện Chương Mỹ, thành phố Hà Nội. Đề thi bao gồm 5 bài toán trên 1 trang, thời gian làm bài là 90 phút. Kỳ thi sẽ diễn ra vào thứ Bảy, ngày 15 tháng 04 năm 2023. Dưới đây là một số ví dụ về nội dung của đề thi: - Bài toán 1: Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một người thợ cần phải sản xuất 300 sản phẩm trong một khoảng thời gian nhất định. Nhờ tăng năng suất lao động, người đó mỗi ngày có thể sản xuất thêm 5 sản phẩm so với kế hoạch ban đầu. Vì vậy, người đó đã hoàn thành công việc sớm hơn 3 ngày so với quy định. Hãy tính số sản phẩm mà người thợ đó cần sản xuất trong một ngày theo kế hoạch ban đầu. - Bài toán 2: Một máy kéo nông nghiệp có hai bánh sau lớn hơn hai bánh trước. Khi bánh sau được bơm căng, có đường kính 126cm. Hỏi khi bánh sau lăn được 20 vòng, xe đã di chuyển được bao nhiêu mét? (lấy giá trị của π là 3,14 và kết quả được làm tròn đến mét gần nhất). - Bài toán 3: Cho Parabol (P): y = x^2 và đường thẳng (d): y = 2mx - m^2 + 4 (với m là tham số). Hãy vẽ đồ thị của hai hàm số trên cùng một hệ trục tọa độ khi m = 1. Tiếp theo, chứng minh rằng đường thẳng (d) luôn cắt (P) tại 2 điểm phân biệt với mọi giá trị của tham số m. Chúc các em học sinh lớp 9 may mắn và thành công trong kỳ thi cuối kì 2 môn Toán. Hy vọng đề thi sẽ giúp các em ôn tập và nắm vững kiến thức đã học. Cảm ơn quý thầy cô giáo đã quan tâm và hỗ trợ trong quá trình học tập của các em. Xin cảm ơn!

Nguồn: sytu.vn

Đọc Sách

Đề cuối học kì 2 Toán 9 năm 2021 - 2022 phòng GDĐT thành phố Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra định kì cuối học kì 2 môn Toán 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo thành phố Huế, tỉnh Thừa Thiên Huế. Trích dẫn đề cuối học kì 2 Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Huế : + Tính chiều cao của một hình trụ có bán kính đáy R = 7cm và diện tích xung quanh bằng 112pi cm2. + Cho phương trình ẩn x: x2 + 2(m + 3)x + 2m – 11 = 0 (1). a) Chứng tỏ phương trình (1) luôn có hai nghiệm phân biệt với mọi giá trị của m. b) Tìm giá trị của m để phương trình (1) có hai nghiệm x1 và x2 thỏa mãn hệ thức. + Trong đợt dịch Covid-19, nhân viên y tế của một trường THCS đã mua một số hộp khẩu trang gồm 2 loại. Biết nếu mua 6 hộp loại thứ nhất và 3 hộp loại thứ hai thì hết 2280000đ; nếu mua 3 hộp loại thứ nhất và 7 hộp loại thứ hai thì hết 2680000đ. Tính giá tiền mỗi loại hộp khẩu trang.
Đề kiểm tra cuối học kỳ 2 Toán 9 năm 2021 - 2022 sở GDĐT An Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 2 môn Toán 9 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh An Giang; kỳ thi được diễn ra vào sáng thứ Năm ngày 05 tháng 05 năm 2022. Trích dẫn đề kiểm tra cuối học kỳ 2 Toán 9 năm 2021 – 2022 sở GD&ĐT An Giang : + Cho hai hàm số y = 2×2; y = x và có đồ thị lần lượt là (P) và (d). a. Vẽ đồ thị (P) của hàm số. b. Bằng phép tính hãy tìm tọa độ giao điểm của (P) và (d). + Cho tam giác ABC vuông tại A, có AB = 8cm; AC = 6cm. Gọi O là trung điểm của AB, vẽ đường tròn (O) tâm O đường kính AB; BC cắt đường tròn (O) tại điểm M. a. Tính độ dài đoạn BC và AM. b. Từ C vẽ tiếp tuyến với đường tròn (O) có tiếp điểm là E khác A. Chứng minh tứ giác OACE nội tiếp. c. Chứng minh rằng CM.CB = CE². + Mặt cắt ngang của một con đường thường có dạng hình Parabol để nước mưa dễ dàng thoát sang hai bên. Hàm số y = -0,006x² mô tả cho mặt cắt ngang của con đường với gốc tọa độ đặt tại tim đường và đơn vị đo là mét (hình vẽ). Hỏi chiều rộng của đường như thế nào thì tim đường cao hơn lề đường 15 cm?
Đề kiểm tra cuối học kì 2 Toán 9 năm 2021 - 2022 sở GDĐT Lạng Sơn
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng cuối học kì 2 môn Toán 9 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Lạng Sơn. Trích dẫn đề kiểm tra cuối học kì 2 Toán 9 năm 2021 – 2022 sở GD&ĐT Lạng Sơn : + Bạn An và bạn Hà cùng may một loại khẩu trang để tặng cho các bệnh nhân mắc COVID-19 đang điều trị trong khu cách li. Biết rằng bạn An may được nhiều hơn bạn Hà 5 chiếc và tổng số khẩu trang của bạn An và ba lần số khẩu trang của bạn Hà may được là 141 chiếc. Hỏi mỗi bạn may được bao nhiêu chiếc khẩu trang? + Cho nửa đường tròn tâm O đường kính AB. Gọi D là điểm nằm trên nửa đường tròn (D khác A và B) và C thuộc cung BD (C khác B và D). Biết AC cắt BD tại E, AD cắt BC tại F. a) Chứng minh rằng DECF là tứ giác nội tiếp. b) Chứng minh rằng DE.BE = AE.CE. c) Gọi I là trung điểm của EF. Chứng minh rằng DI là tiếp tuyến của đường tròn tâm O. + Cho x và y là 2 số thực không âm thỏa mãn x + y =< 1. Tìm giá trị lớn nhất của biểu thức A.
Đề cuối kỳ 2 Toán 9 năm 2021 - 2022 phòng GDĐT Hà Đông - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 2 môn Toán 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo quận Hà Đông, thành phố Hà Nội. Trích dẫn đề cuối kỳ 2 Toán 9 năm 2021 – 2022 phòng GD&ĐT Hà Đông – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một hội trường có 100 ghế ngồi được kê thành những dãy ghế, mỗi dãy ghế có số ghế ngồi như nhau. Sau đó, khi sửa chữa người ta đã bổ sung thêm 5 dãy ghế. Để đảm bảo số chỗ ngồi của hội trường như ban đầu, mỗi dãy ghế được kê ít hơn so với ban đầu là 1 ghế. Hỏi ban đầu, hội trường có bao nhiêu dãy ghế? + Chiếc mũ sinh nhật là một hình nón được làm từ bìa cứng có đường kính đáy là 36 cm, độ dài đường sinh là 35 cm. Hãy tính diện tích phần bìa cứng để làm một chiếc mũ nói trên (bỏ qua mép gấp và cho pi = 3,14). + Cho tam giác ABC nhọn (AB > AC) nội tiếp đường tròn (O), kẻ đường cao AH của ABC và đường kính AD của (O). Gọi M là hình chiếu vuông góc của B trên đường thẳng AD. 1) Chứng minh tứ giác ABMH nội tiếp. 2) Tiếp tuyến tại D của đường tròn (O) cắt hai tia AB và AC lần lượt tại E và F. Chứng minh AB.AE = AC.AF. 3) Gọi I là trung điểm của BC, đường thẳng qua I song song với CD cắt BM tại K, tia DK cắt đường tròn (O) tại điểm thứ hai là S. Hai đường thẳng BC và EF cắt nhau tại Q. Chứng minh tứ giác SBKI nội tiếp và SQ là tiếp tuyến của (O).