Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu luyện thi TN THPT 2022 môn Toán - Trần Thanh Hiếu (Quyển 1)

Tài liệu gồm 290 trang, được biên soạn bởi thầy giáo Trần Thanh Hiếu, tuyển tập các chuyên đề luyện thi TN THPT 2022 môn Toán. Mục lục tài liệu luyện thi TN THPT 2022 môn Toán – Trần Thanh Hiếu (Quyển 1): PHẦN 1 : GIẢI TÍCH. Chương 1 : Ứng dụng đạo hàm khảo sát và vẽ đồ thị hàm số. Bài 1 : Sự đồng biến – nghịch biến của hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tìm khoảng đơn điệu của hàm số cho bằng công thức. 2. Tìm khoảng đơn điệu của hàm số cho bằng bảng biến thiên đồ thị. 3. Tìm m đề hàm số y = ax3 + bx2 + cx + d đồng biến – nghịch biến trên R. 4. Biện luận tính đồng biến – nghịch biến của hàm số trên khoảng, đoạn cho trước là tập con của R. 5. Biện luận tính đồng biến – nghịch biến của hàm phân thức y = (ax + b)/(cx + d). 6. Đồng biến – nghịch biến của hàm hợp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 2 : Cực trị của hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tìm cực trị của hàm số cho bằng công thức. 2. Xác định cực trị hàm số cho bằng bảng biến thiên, đồ thị. 3. Tìm m đề hàm số đạt cực trị tại điểm x0. 4. Biện luận cực trị của hàm số bậc ba. 5. Biện luận cực trị của hàm số trùng phương. 6. Cực trị của hàm chứa dấu trị tuyệt đối, hàm hợp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 3 : Giá trị lớn nhất – giá trị nhỏ nhất. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Max – min của hàm số cho bằng công thức. 2. Max – min của hàm số cho bằng bảng biế thiên, đồ thị. 3. Tìm tham số m theo yêu cầu max – min. 4. Max -min của hàm hợp. 5. Bài toán ứng dụng max – min. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 4 : Đường tiệm cận của đồ thị hàm số. A. Lý thuyết cơ bản càn nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tìm tiệm cận đứng – tiệm cận ngang của hàm số hữu tỉ. 2. Đường tiệm cận cho bởi bảng biến thiên, đồ thị. 3. Tìm m theo yêu cầu về tiệm cận của bài toán. 4. Tiệm cận của hàm hợp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 5 : Đồ thị các hàm số thường gặp. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Nhận dạng đồ thị hàm số bậc ba. 2. Nhận dạng đồ thị hàm số trùng phương. 3. Nhận dạng đồ thị hàm số nhất biến. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 6 : Sự tương giao của đồ thị hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Giải, biện luận phương trình bằng bảng biến thiên đồ thị. 2. Xác định, biện luận giao điểm của đồ thị hàm số bậc ba và đường cong (đường thẳng). 3. Xác định, biện luận giao điểm của đồ thị hàm số trùng phương và đường cong (đường thẳng). 4. Xác định, biện luận giao điểm của đồ thị hàm số nhất biến và đường cong (đường thẳng). 5. Ứng dụng đồ thị biện luận nghiệm bất phương trình. 6. Tương giao hàm hợp, hàm chứa dấu trị tuyệt đối. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 7 : Phương trình tiếp tuyến của đồ thị hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Phương trình tiếp tuyến biết x0 hoặc điểm M(x0;y0). 2. Phương trình tiếp tuyết biết tung độ y0. 3. Phương trình tiếp tuyến biết hệ số góc k. 4. Phương trình tiếp tuyến đi qua điểm A(x;y) không thuộc đồ thị hàm số. C. Phiếu học tập. Phiếu học tập số 1. Đề ôn tập cuối chương. Đề số 01. Đề số 02. Chương 2 : Hàm số lũy thừa – hàm số mũ – hàm số logarit. Bài 1 : Lũy thừa. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tính giá trị biểu thức. 2. Rút gọn biểu thức. 3. So sánh lũy thừa. C. Phiếu học tập. Phiếu học tập số 1. Bài 2 : Hàm số lũy thừa. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tập xác định của hàm số lũy thừa. 2. Đạo hàm của hàm số lũy thừa. 3. Nhận dạng đồ thị hàm số lũy thừa. C. Phiếu học tập. Phiếu học tập số 1. Bài 3 : Logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tính giá trị, rút gọn biểu thức logarit. 2. So sánh logarit. 3. Phân tích, biểu diễn logarit theo các logarit đã biết. 4. Biến đổi logarit tổng hợp. C. Phiếu học tập. Phiếu học tập số 1. Bài 4 : Hàm số mũ – hàm số logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tập xác định hàm số mũ – logarit. 2. Đạo hàm hàm số mũ – logarit. 3. Nhận dạng đồ thị hàm số mũ – logarit. C. Phiếu học tập. Phiếu học tập số 1. Bài 5 : Phương trình mũ – Phương trình logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Phương trình mũ -logarit cơ bản. 2. Phương trình bậc hai, quy về bậc hai mũ – logarit. 3. Phương trình mũ – logarit biến đổi tổng hợp. 4. Phương trình mũ – logarit giải bằng phương pháp hàm số. 5. Phương trình mũ – logarit có tham số m. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 6 : Bất phương trình mũ – bất phương trình logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Bất phương trình mũ – logarit cơ bản. 2. Bất phương trình bậc hai, quy về bậc hai mũ – logarit. 3. Bất phương trình mũ – logarit biến đổi tổng hợp. 4. Bất phương trình mũ – logarit giải bằng phương pháp hàm số. 5. Bất phương trình mũ – logarit có tham số m. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 7 : Ứng dụng và bài toán Max – Min. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Bài toán lãi suất – tăng trưởng. 2. Max – min, bài toán tổng hợp nhiều biến. C. Phiếu học tập. Phiếu học tạp số 1. Đề ôn tập cuối chương. Đề số 01. Đề số 02. PHẦN 2 : HÌNH HỌC. Chương 1 : Khối đa diện. Bài 1 : Khái niệm về khối đa diện. A. Lý thyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Nhận dạng hình đa diện. 2. Số cạnh, số mặt, số đỉnh của hình đa diện. 3. Phân chia, lắp ghép khối đa diện. C. Phiếu học tập. Phiếu học tập số 1. Bài 2 : Khối đa diện lồi và khối đa diện đều. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Nhận dạng khối đa diện lồi – đa diện đều. 2. Mặt phẳng đối xứng của khối đa diện. C. Phiếu học tập. Phiếu học tập số 1. Bài 3 : Thể tích khối chóp. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Khối chóp có cạnh bên vuông góc với mặt đáy. 2. Khối chóp có mặt bên vuông góc với mặt đáy. 3. Khối chóp đều. 4. Góc, khoảng cách liên quan đến khối chóp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 4 : Thể tích khối lắng trụ. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Khối lăng trụ đứng tam giác. 2. Khối lăng trụ đứng tứ giác (lập phương, hình hộp chữ nhật). 3. Khối lăng trụ xiên. 4. Góc, khoảng cách liên quan đến khối lăng trụ. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Đề ôn tập cuối chương. Đề số 01. Đề số 02. Chương 2 : Mặt nón – mặt trụ – mặt cầu. Bài 1 : Mặt nón – khối nón. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Các yếu tố cơ bản của hình nón. 2. Quay tạo thành hình nón. 3. Thiết diện qua trục, góc ở đỉnh. 4. Thiết diện không qua trục. 5. Ngoại tiếp – nội tiếp của hình nón. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 2 : Mặt trụ – khối trụ. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Các yếu tố cơ bản của hình trụ. 2. Quay tạo thành hình trụ. 3. Thiết diện qua trục. 4. Thiết diện không qua trục. 5. Ngoại tiếp – nội tiếp của hình trụ. 6. Toán tổng hợp hình trụ – khối trụ. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 3 : Mặt cầu – khối cầu. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Các yếu tố cơ bản của khối cầu. 2. Ngoại tiếp hình chóp. 3. Ngoại tiếp lăng trụ đứng, lập phương, hộp chữ nhật. 4. Ngoại tiếp hình nón – hình trụ. 5. Mặt phẳng cắt mặt cầu. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Đề ôn tập cuối chương. Đề số 01. Đề số 02.

Nguồn: toanmath.com

Đọc Sách

Tuyển tập và giải chi tiết các bài toán thực tiễn trong đề thi thử Trần Văn Tài
Nội dung Tuyển tập và giải chi tiết các bài toán thực tiễn trong đề thi thử Trần Văn Tài Bản PDF - Nội dung bài viết Tuyển tập và giải chi tiết các bài toán thực tiễn trong đề thi thử Trần Văn Tài Tuyển tập và giải chi tiết các bài toán thực tiễn trong đề thi thử Trần Văn Tài Tuyển tập này bao gồm 174 trang chứa các bài toán ứng dụng thực tiễn được chọn lọc từ các đề thi thử THPT Quốc gia năm 2017, kèm theo lời giải chi tiết. Các bài toán được phân loại thành các chủ đề sau: + Chủ đề 1: Liên quan đến di chuyển và quãng đường đi + Chủ đề 2: Liên quan đến cắt và ghép các khối hình + Chủ đề 3: Liên quan đến lãi suất ngân hàng và trả góp + Chủ đề 4: Bài toán tăng trưởng + Chủ đề 5: Bài toán tối ưu chi phí sản xuất + Chủ đề 6: Bài toán thực tế về min - max Ví dụ về một bài toán trong tuyển tập: Một kho hàng cần được chuyển từ vị trí A trên bến cảng tới kho C trên một đảo. Khoảng cách ngắn nhất từ kho C đến bờ biển AB là 60km, trong khi khoảng cách giữa hai điểm A và B là 130km. Chi phí vận chuyển hàng bằng đường bộ là 300.000 đồng/km, và bằng đường thủy là 500.000 đồng/km. Ta cần chọn điểm trung chuyển hàng D cách kho A một khoảng bao nhiêu để tổng chi phí vận chuyển hàng từ A đến C là ít nhất? Tuyển tập này cung cấp cách tiếp cận bài toán một cách logic và chi tiết, giúp học sinh hiểu rõ các bước giải quyết và áp dụng vào thực tế.Đây sẽ là tài liệu hữu ích cho những ai muốn nâng cao kỹ năng giải bài toán và làm quen với các dạng bài thi thử thực tế.
Tuyển chọn 152 bài toán vận dụng cao trong các đề thi thử Nguyễn Văn Rin
Nội dung Tuyển chọn 152 bài toán vận dụng cao trong các đề thi thử Nguyễn Văn Rin Bản PDF - Nội dung bài viết Tuyển chọn 152 bài toán vận dụng cao trong các đề thi thử Nguyễn Văn Rin Tuyển chọn 152 bài toán vận dụng cao trong các đề thi thử Nguyễn Văn Rin Đây là tài liệu gồm 26 trang tuyển chọn 152 bài toán mức độ vận dụng cao trong các đề thi thử THPT Quốc gia 2017 của các trường và sở GD – ĐT trên cả nước, các bài tập có đáp án. Trong tài liệu này, bạn sẽ được thách thức với các bài toán như: Một cửa hàng bán lẻ phần mềm MathType với giá ban đầu là 10 USD, và sau đó giảm giá để tăng doanh số bán hàng. Bạn sẽ phải tính toán để xác định giá bán để cửa hàng thu được lợi nhuận lớn nhất. Cho ba tia Ox, Oy, Oz vuông góc với nhau, bạn sẽ phải tìm giá trị bé nhất của bán kính mặt cầu ngoại tiếp tứ diện OABC. Bạn sẽ phải tính toán thể tích phần không gian nằm bên trong cái lều đặc biệt với hình dạng hình “chóp lục giác cong đều”. Với sự đa dạng và phong phú của các bài toán, tài liệu này sẽ giúp bạn rèn luyện kỹ năng giải quyết bài toán và chuẩn bị tốt cho kỳ thi sắp tới. Hãy cùng thử sức và nâng cao trình độ toán học của mình với 152 bài toán vận dụng cao trong tài liệu này!
Tuyển tập đề thi và phương pháp giải nhanh Toán trắc nghiệm Nguyễn Bá Tuấn
Nội dung Tuyển tập đề thi và phương pháp giải nhanh Toán trắc nghiệm Nguyễn Bá Tuấn Bản PDF - Nội dung bài viết Tuyển tập đề thi và phương pháp giải nhanh Toán trắc nghiệm Nguyễn Bá Tuấn Tuyển tập đề thi và phương pháp giải nhanh Toán trắc nghiệm Nguyễn Bá Tuấn Sách "Tuyển tập đề thi và phương pháp giải nhanh Toán trắc nghiệm Nguyễn Bá Tuấn" bao gồm 341 trang chia thành 3 phần chính. + Phần 1: Sách giới thiệu một số phương pháp tư duy giải nhanh Toán trắc nghiệm, bao gồm: - Các yếu tố cốt lỗi khi sử dụng máy tính bỏ túi (MTBT) - Phương pháp biến đổi và ước lượng - Phương pháp tư duy đặc biệt hóa – tổng quát hóa - Phương pháp loại trừ 50 – 50 - Phương pháp tư duy truy hồi - Các công thức đặc biệt + Phần 2: Bao gồm các đề thi thử theo cấu trúc đề minh họa THPT 2017 môn Toán, giúp người đọc ôn tập và củng cố kiến thức. + Phần 3: Cung cấp đề thi Toán trắc nghiệm mở rộng, giúp người đọc thử sức và nâng cao khả năng giải bài toán.
Luyện đề trắc nghiệm môn Toán ôn thi THPT Quốc gia 2017 (Megabook) Trần Công Diêu
Nội dung Luyện đề trắc nghiệm môn Toán ôn thi THPT Quốc gia 2017 (Megabook) Trần Công Diêu Bản PDF - Nội dung bài viết Sản phẩm Luyện đề trắc nghiệm môn Toán ôn thi THPT Quốc gia 2017 (Megabook) Trần Công Diêu Sản phẩm Luyện đề trắc nghiệm môn Toán ôn thi THPT Quốc gia 2017 (Megabook) Trần Công Diêu Sách Luyện đề trắc nghiệm môn Toán ôn thi THPT Quốc gia 2017 do thầy Trần Công Diêu và Megabook biên soạn có tổng cộng 482 trang. Sách bao gồm 20 đề then chốt theo lộ trình giúp học sinh đạt điểm cao trong kỳ thi sắp tới. Cấu trúc sách được xây dựng theo chuẩn kiến thức Toán lớp 12, giúp học sinh ôn tập hiệu quả. Mỗi đề đều có lời giải chi tiết, trọng tâm giúp học sinh hiểu rõ kiến thức và tự tin đối phó với các dạng bài thi. Sản phẩm này là sự lựa chọn tốt cho học sinh muốn tự học và tự ôn thi Toán một cách nhanh chóng và hiệu quả.