Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 2 trường chuyên Quốc học Huế

Chủ Nhật ngày 05 tháng 07 năm 2020, trường THPT chuyên Quốc học Huế, tỉnh Thừa Thiên Huế tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán lần thứ hai năm học 2019 – 2020 dành cho học sinh khối 12. Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 2 trường chuyên Quốc học Huế mã đề 143 gồm có 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 143, 295, 387, 415. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán lần 2 trường chuyên Quốc học Huế : + Biết rằng các số log a; log b; log c theo thứ tự đó lập thành cấp số cộng, đồng thời log a – log 2b; log 2b – log 3c; log 3c – log a theo thứ tự đó cũng tạo thành một cấp số cộng. Tìm khẳng định đúng? A. Không có tam giác nào có ba cạnh là a, b, c. B. a, b, c là ba cạnh của một tam giác tù. C. a, b, c là ba cạnh của một tam giác vuông. D. a, b, c là ba cạnh của một tam giác nhọn. [ads] + Giả sử hàm số y = mx^4 – (m^2 + 2)x^2 + (m^3 + 11m)/9 có đồ thị (C) và hàm số y = x^2 có đồ thị (C) cắt nhau tại bốn điểm phân biệt. Biết rằng hình phẳng (H) giới hạn (C) và (C) là hợp của ba hình phẳng (H1), (H2), (H3) có diện tích tương ứng là S1, S2, S3 trong đó 0 ≤ S1 ≤ S2 ≤ S3 và các hình phẳng (H1), (H2), (H3) đôi một giao nhau tại không quá một điểm. Gọi T là tập hợp các giá trị của m sao cho S3 = S1 + S2. Tính tổng bình phương các phần tử của T. + Cắt một vật thể (T) bởi hai mặt phẳng (P) và (Q) vuông góc với trục Ox lần lượt tại các điểm có hoành độ x = a và x = b (a < b) (xem hình). Một mặt phẳng tùy ý vuông góc với Ox tại điểm có hoành độ x (a ≤ x ≤ b) cắt (T) theo thiết diện có diện tích là S(x). Giả sử S(x) liên tục trên đoạn [a;b]. Khi đó thể tích V của phần vật thể (T) giới hạn bởi hai mặt phẳng (P) và (Q) được tính bởi công thức nào sau đây?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT chuyên Lê Hồng Phong - Nam Định lần 3
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT chuyên Lê Hồng Phong – Nam Định lần 3 gồm 50 câu hỏi trắc nghiệm.
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT chuyên Lê Quý Đôn - Quảng Trị lần 2
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT chuyên Lê Quý Đôn – Quảng Trị lần 2 gồm 50 câu hỏi trắc nghiệm. Trích một số bài toán trong đề: + Khi cho bán kính đáy của một khối trụ tăng lên gấp đôi, đồng thời cho chiều cao của nó giảm xuống còn một nửa thì diện tích xung quanh và thể tích của khối trụ mới thay đổi như thế nào? A. Diện tích xung quanh tăng gấp đôi, thể tích tăng gấp đôi B. Diện tích xung quanh tăng gấp đôi, thể tích giảm đi một nửa C. Diện tích xung quanh không đổi, thể tích tăng gấp đôi D. Diện tích xung quanh không đổi, thể tích không đổi + Cho những tấm tôn hình chữ nhật có chu vi 60 cm. Người ta tạo ra mặt xung quanh hình trụ theo sơ đồ như hình vẽ. Tính diện tích xung quanh của hình trụ trong trường hợp thể tích phần không gian giới hạn bởi hình trụ đạt giá trị lớn nhất.
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT chuyên Thái Bình lần 5
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT chuyên Thái Bình lần 5 gồm 50 câu hỏi trắc nghiệm, có đáp án. Trích một số bài toán trong đề: + Cắt bỏ hình quạt tròn AOB – hình phẳng có nét gạch trong hình, từ một mảnh các-tông hình tròn bán kính R và dán lại với nhau để được một cái phễu có dạng của một hình nón (phần mép dán coi như không đáng kể). Gọi x là góc ở tâm của quạt tròn dùng làm phễu. Tìm x để hình nón có thể tích lớn nhất. + Một người gửi 6 triệu đồng vào ngân hàng theo hình thức lãi kép, kì hạn một năm với lãi suất 7,56% một năm. Hỏi sau bao nhiêu năm người đó sẽ có ít nhất 12 triệu đồng từ số tiền gửi đó? + Cho hình chóp S.ABCD có đáy là hình chữ nhật với AB = a, BC = 2a. Mặt bên SAB là tam giác vuông tại S và thuộc mặt phẳng vuông góc với đáy (ABCD). Tính bán kính của mặt cầu ngoại tiếp hình chóp S.ABCD.
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Trần Phú - Hà Tĩnh lần 2
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Trần Phú – Hà Tĩnh lần 2 gồm 50 câu hỏi trắc nghiệm. Trích một số bài toán trong đề: + Bạn An có một chiếc nón lá, bạn muốn dán kín một lớp giấy màu bên ngoài chiếc nón đó, biết độ dài từ đỉnh nón đến vành nón là 0.3m, bán kính đáy của nón là 0.25m. Diện tích giấy màu bạn An cần dùng là? + Một đoạn dây dài 1m được cắt thành 2 đoạn có độ dài là a và b. Đoạn có độ dài b được gấp thành hình vuông. Để tổng diện tích của hình tròn và hình vuông là nhỏ nhất thì tỉ số a/b gần bằng giá trị nào trong các giá trị sau? + Các kỹ sư của một công ty sản xuất bình đựng nước sinh hoạt cần thiết kế một dạng bình mới gồm một hình trụ và hai nửa hình cầu bằng nhau có bán kính là r ghép với nhau. Yêu cầu của bình nước là dài 2.85m, độ dài của phần hình trụ tối thiểu là 1m. Với yêu cầu trên, các kỹ sư đã thiết kế sao cho bình có thể tích lớn nhất. Giá trị lớn nhất đó gần bằng giá trị nào nhất trong các giá trị sau?