Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Một số phương pháp giải bài toán phương trình nghiệm nguyên

Tài liệu gồm 67 trang, hướng dẫn một số phương pháp giải bài toán phương trình nghiệm nguyên, kèm các ví dụ minh họa có đáp số và hướng dẫn giải chi tiết. I. MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN Phương pháp 1 . Sử dụng các tính chất về quan hệ chia hết. Khi giải các phương trình nghiệm nguyên cần vận dụng linh hoạt các tính chất về chia hết, đồng dư, tính chẵn lẻ,… để tìm ra điểm đặc biệt của các ẩn số cũng như các biểu thức chứa ẩn trong phương trình, từ đó đưa phương trình về các dạng mà ta đã biết cách giải hoặc đưa về những phương trình đơn giản hơn. + Xét số dư hai vế của phương trình để chỉ ra phương trình không có nghiệm, tính chẵn lẻ của các vế. + Đưa phương trình về dạng phương trình ước số. + Phát hiện tính chia hết của các ẩn. + Sử dụng tính đồng dư của các đại lượng nguyên. Phương pháp 2 . Đưa hai vế về tổng các bình phương. Ý tưởng của phương pháp là biến đổi phương trình về dạng vế trái là tổng của các bình phương và vế phải là tổng của các số chính phương. Phương pháp 3 . Sử dụng các tính chất của số chính phương. Một số tính chất của số chính phương thường được dùng trong giải phương trình nghiệm nguyên. + Một số tính chất về chia hết của số chính phương. + Nếu 2 2 a n a1 với a là số nguyên thì n không thể là số chính phương. + Nếu hai số nguyên dương nguyên tố cùng nhau có tích là một số chính phương thì mỗi số đếu là số chính phương. + Nếu hai số nguyên liên tiếp có tích là một số chính phương thì một trong hai số nguyên đó bằng 0. Phương pháp 4 . Phương pháp đánh giá. Trong khi giải các phương trình nghiệm nguyên rất cần đánh giá các miền giá trị của các ẩn, nếu số giá trị mà biến số có thể nhận không nhiều có thể dùng phương pháp thử trực tiếp để kiểm tra. Để đánh giá được miền giá trị của biến số cần vận dụng linh hoạt các tính chất chia hết, đồng dư, bất đẳng thức. + Phương pháp sắp thứ tự các ẩn. + Xét khoảng giá trị của các ẩn. + Sử dụng các bất đẳng thức Cauchy, Bunhiacopxki. Phương pháp 5 . Sử dụng tính chất của phương trình bậc hai. Ý tưởng của phương pháp là quy phương trình đã cho về dạng phương trình bậc hai một ẩn, các ẩn còn lại đóng vai trò tham số. Khi đó các tính chất của phương trình bậc hai thường được sử dụng dưới các dạng như sau: + Sử dụng điều kiện có nghiệm ∆ ≥ 0 của phương trình bậc hai. + Sử dụng hệ thức Vi – et. + Sử dụng điều kiện ∆ là số chính phương. Phương pháp 6 . Phương pháp lùi dần vô hạn. Ý tưởng của phương pháp lùi dần vô hạn có thể hiểu như sau: Giả sử (x y z 0 0 0) là nghiệm của f x y z 0. Nhờ những biến đổi và suy luận số học ta tìm được một nghiệm khác (x y z 1 1 1) sao cho các nghiệm quan hệ với bộ nghiệm đầu tiên bởi một tỉ số k nào đó, chẳng hạn 0 1 0 10 1 x kx y ky z kz. Lập luận tương tự ta lại được bộ số nguyên (x y z 2 2 2) thỏa mãn 1 2 1 11 2 x kx y ky z kz. Quá trình cứ tiếp tục dẫn đến 0 00 x y z cùng chia hết cho n k với n là một số tự nhiên tuỳ ý. Điều này xảy ra khi và chỉ khi xyz0. Để rõ ràng hơn ta xét các ví dụ sau. II. MỘT SỐ DẠNG PHƯƠNG TRÌNH NGHIỆM NGUYÊN Phương trình nghiệm nguyên rất đa dạng và phong phú, nó có thể là phương trình một ẩn hay nhiều ẩn. Nó có thể là phương trình bậc nhất hoặc bậc cao. Cũng có những phương trình dạng đa thức hoặc dạng lũy thừa. Ta có thể chia phương trình nghiệm nguyên thành một số dạng như sau. 1. Phương trình nghiệm nguyên dạng đa thức. 2. Phương trình nghiệm nguyên dạng phân thức. 3. Phương trình nghiệm nguyên có chứa căn. 4. Phương trình nghiệm nguyên dạng lũy thừa. 5. Hệ phương trình nghiệm nguyên.

Nguồn: toanmath.com

Đọc Sách

Toàn cảnh đề Toán tuyển sinh lớp 10 trường chuyên năm học 2019 - 2020
THCS. giới thiệu đến thầy, cô giáo và các em học sinh tài liệu toàn cảnh đề Toán tuyển sinh lớp 10 trường chuyên năm học 2019 – 2020 do thầy Vũ Ngọc Thành tổng hợp, tài liệu gồm 312 trang phân loại các câu hỏi và bài tập trong các đề Toán tuyển sinh vào lớp 10 THPT chuyên năm học 2019 – 2020 thành các chuyên đề, có lời giải chi tiết. Các chuyên đề trong tài liệu toàn cảnh đề Toán tuyển sinh lớp 10 trường chuyên năm học 2019 – 2020 gồm: + Chuyên đề 1: Căn bậc hai và bài toán liên quan (Trang 2). + Chuyên đề 2: Bất đẳng thức – giá trị lớn nhất & giá trị nhỏ nhất (Trang 29). + Chuyên đề 3: Phương trình (Trang 62). + Chuyên đề 4: Hệ phương trình (Trang 104). + Chuyên đề 5: Hàm số (Trang 131). + Chuyên đề 6: Giải bài toán bằng cách lập phương trình – hệ phương trình – bài toán thực tế (Trang 150). + Chuyên đề 7: Hình học (Trang 158). + Chuyên đề 8: Số học (Trang 262). + Chuyên đề 9: Biểu thức (Trang 304).
Các bài toán thực tế trong đề tuyển sinh vào 10 THPT
Tài liệu gồm 102 trang hướng dẫn phương pháp giải các bài toán thực tế trong đề tuyển sinh vào 10 THPT, đây là một dạng toán mới được đưa vào đề thi tuyển sinh vào lớp 10 môn Toán trong những năm gần đây, nhằm giúp học sinh khối THCS thấy được ứng dụng của toán học trong đời sống thực tiễn, tài liệu được biên soạn bởi tác giả Toán Họa. Khái quát nội dung tài liệu các bài toán thực tế trong đề tuyển sinh vào 10 THPT : CÁC DẠNG TOÁN Dạng toán 1 : Lãi suất ngân hàng. + Lãi đơn: Số tiền lãi chỉ tính trên số tiền gốc mà không tinh trên số tiền lãi do số tiền gốc sinh ra. + Lãi kép: Là số tiền lãi không chỉ tính trên số tiền gốc mà còn tính trên số tiền lãi do tiền gốc sinh ra thay đổi theo từng định kì. Dạng toán 2 : Giải hệ phương trình – giải phương trình. + Dạng toán giải toán bằng cách lập phương trình, hệ phương trình bậc nhất hai ẩn thường xuyên gặp trong những đề thi tuyển sinh lớp 10. Đây là dạng toán khó trong chương trình Trung học cơ sở. Học sinh thường xuyên quên và chưa biết áp dụng các kiến thức liên quan để giải toán. + Khi lập được hệ phương trình ta áp dụng các phương pháp đã học để giải tìm nghiệm của bài toán. + Phương pháp giải tổng quát của loại toán này là: ta lần lượt đặt từng thành phần là x, y và dựa vào các giả thiết của bài toán để lập hai phương trình thể hiện mối liên quan của các ẩn và từ đó giải để được x, y. Đối chiếu điều kiện của ẩn. + Hiển nhiên, nếu sau này kết hợp với kiến thức phương trình bậc hai, ta có những hệ phương trình cao hơn nhưng chung quy lại vẫn dùng những kiến thức cơ sở này. + Loại toán giải bằng cách lập hệ phương trình bậc nhất hai ẩn số có bốn dạng chính: dạng toán về số, dạng toán chuyển động, dạng toán năng suất, dạng toán ứng dụng hình học. [ads] Dạng toán 3 : Vận dụng trong hình học. + Vận dụng định lý Pytago. + Vận dụng kiến thức về hệ thức giữa cạnh và đường cao trong tam giác vuông. + Vận dụng hệ thức liên hệ giữa cạnh và góc trong tam giác vuông. Dạng toán 4 : Vận dụng các công thức hóa – lý. + Vận dụng các công thức Vật lý: I = U/R (I là cường độ dòng điện, U là hiệu điện thế, R là điện trở). + Vận dụng công thức Hóa học: nồng độ phần trăm, nồng độ mol, khối lượng riêng của dung dịch, đổi đơn vị. MỘT SỐ BÀI TẬP PHÂN DẠNG TỰ LUYỆN Dạng toán 1 : Bài toán kinh tế, tăng trưởng, tăng dân số, lãi suất, tiền điện, tiền taxi. Dạng toán 2 : Giải bài toán bằng cách lập phương trình dạng bậc nhất hoặc lập hệ phương trình. Dạng toán 3 : Giải bài toán bằng cách lập hệ phương trình, lập phương trình.
Phương pháp giải đề tuyển sinh vào lớp 10 môn Toán
Nhằm giúp cho các ẹm học sinh chuẩn bị thi vào lớp 10 các trường công lập, trường chuyên, chúng tôi biên soạn cuốn sách Phương pháp giải đề tuyển sinh 9. Cuốn sách tổng hợp từ các đề thi của các trường trong cả nước, được biên soạn rất tâm huyết từ nhóm giáo viên: Nguyễn Ngọc Dũng, Đặng Thị Bích Tuyền, Nguyễn Xuân Tùng, Nguyễn Thành Điệp, Võ Tấn Đạt, Nguyễn Ngọc Nguyên, Ngô Trâm Anh, Lê Minh Thuần, Trần Nguyễn Vân Nhi, Nguyễn Trung Kiên, Lê Đức Việt, Phạm Tiến Đạt … Với cuốn sách này hi vọng các em sẽ có thể gặp nhiều dạng toán ôn thi và mức độ ra đề của từng trường để từ đó các em đề ra phương pháp ôn thi tốt nhất cho mình. Các đề trong tài liệu gồm : + Đề 1. Đề thi tuyển sinh lớp 10 sở GD & ĐT Bắc Giang 2016 – 2017 + Đề 2. Đề thi tuyển sinh lớp 10 sở GD & ĐT Bình Dương 2017 – 2018 + Đề 3. Đề thi tuyển sinh lớp 10 Chuyên Sở GD và ĐT Bình Định 2017 – 2018 (đề thường) + Đề 4. Đề thi tuyển sinh lớp 10 sở GD và ĐT Bắc Giang 2017 – 2018 + Đề 5. Đề thi tuyển sinh vào lớp 10 tỉnh Bắc Ninh 2017 [ads] + Đề 6. Đề thi tuyển sinh lớp 10 Sở GD & ĐT Quảng Ngãi 2017 – 2018 + Đề 7. Đề thi tuyển sinh Lớp 10 Sở GD và ĐT Cà Mau + Đề 8. Đề thi tuyển sinh lớp 10, Sở Giáo dục và Đào tạo tỉnh Đồng Nai + Đề 9. Đề thi tuyển sinh vào lớp 10 THPT tỉnh Hưng Yên + Đề 10. Đề thi tuyển sinh lớp 10 tỉnh Hải Dương năm học 2017 – 2018 + Đề 11. Đề thi tuyển sinh Sở GD & ĐT Hà Tĩnh 2017 – 2018 + Đề 12. Đề thi tuyển sinh Sở GD và ĐT Thừa Thiên Huế 2017 + Đề 13. Đề thi tuyển sinh lớp 10 Sở GD & ĐT Kiên Giang 2017 – 2018 + Đề 14. Đề thi tuyển sinh vào lớp 10 Tỉnh Khánh Hòa + Đề 15. Đề thi tuyển sinh lớp 10 sở GD và ĐT Nghệ An 2017 – 2018