Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề giải toán bằng cách lập hệ phương trình

Nội dung Chuyên đề giải toán bằng cách lập hệ phương trình Bản PDF - Nội dung bài viết Chuyên đề giải toán bằng cách lập hệ phương trình Chuyên đề giải toán bằng cách lập hệ phương trình Tài liệu Chuyên đề giải toán bằng cách lập hệ phương trình bao gồm 84 trang được biên soạn bởi tác giả Toán Học Sơ Đồ. Tài liệu tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề giải toán bằng cách lập hệ phương trình, nhằm hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 3 bài số 5 - 6. A. KIẾN THỨC TRỌNG TÂM Bước 1: Lập hệ phương trình: - Chọn ẩn, đơn vị cho ẩn và đặt điều kiện thích hợp cho chúng. - Biểu diễn các đại lượng chưa biết trong bài toán theo ẩn (chú ý đơn vị). - Dựa vào các dữ kiện, điều kiện của bài toán để lập hệ phương trình. Bước 2: Giải hệ phương trình. Bước 3: Nhận định, so sánh kết quả nghiệm của hệ phương trình với điều kiện bài toán. Kết luận, trả lời, nêu rõ đơn vị của đáp số. B. CÁC DẠNG TOÁN Dạng 1: Bài toán chuyển động. - Dạng chuyển động ngược chiều. - Dạng chuyển động cùng chiều. - Dạng chuyển động cùng chiều và ngược chiều. - Dạng toán thay đổi vận tốc trên đường đi. Dạng 2: Bài toán liên quan đến số học. - Dạng số có hai chữ số. - Dạng tỷ số, tuổi tác. Dạng 3: Bài toán về dân số, lãi suất ngân hàng, tăng trưởng. Dạng 4: Bài toán về công việc làm chung, làm riêng; vòi nước chảy chung chảy riêng. - Dạng vòi nước. - Dạng cùng làm chung công việc. Dạng 5: Bài toán có liên quan đến nội dung hình học. Dạng 6: Bài toán có liên quan đến nội dung vật lý, hoá học. Dạng 7: Bài toán khác. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU TỰ LUYỆN TỔNG HỢP CHUNG Dạng 1: Dạng toán tìm số. Dạng 2: Tìm toán chuyển động. Dạng 3: Dạng toán công việc làm chung làm riêng, vòi nước. Dạng 4: Dạng toán tỉ lệ phần trăm (%), năng xuất. Dang 5: Dạng toán sử dụng các kiến thức vật lý, hóa học.

Nguồn: sytu.vn

Đọc Sách

Tổng hợp kiến thức cơ bản Toán 9
Nhằm giúp các em tra cứu nhanh các kiến thức cơ bản môn Toán lớp 9, THCS. giới thiệu đến các em tài liệu tổng hợp kiến thức cơ bản toán 9, tài liệu gồm 17 trang bao gồm lý thuyết, các dạng toán, cách giải các dạng Toán 9 … giúp các em học tốt chương trình Toán 9 và hữu ích trong quá trình ôn tập chuẩn bj cho kỳ thi tuyển sinh vào lớp 10 môn Toán. Khái quát nội dung tài liệu tổng hợp kiến thức cơ bản toán 9: PHẦN 1 . ĐẠI SỐ A. Kiến thức cần nhớ . 1. Điều kiện để căn thức có nghĩa. 2. Các công thức biến đổi căn thức. 3. Hàm số y = ax + b (a khác 0). 4. Hàm số y = ax^2 (a khác 0). 5. Vị trí tương đối của hai đường thẳng. 6. Xét vị trí tương đối của đường thẳng và đường cong. 7. Phương trình bậc hai. 8. Hệ thức Vi-et và ứng dụng. 9. Giải bài toán bằng cách lập phương trình, hệ phương trình. B. Các dạng bài tập . Dạng 1: Rút gọn biểu thức. Dạng 2: Bài toán tính toán. Dạng 3: Chứng minh đẳng thức. Dạng 4: Chứng minh bất đẳng thức. Dạng 5: Bài toán liên quan đến phương trình bậc hai. Dạng 6: Giải phương trình, bất phương trình. Dạng 7: Giải phương trình vô tỉ. Dạng 8: Giải phương trình chứa dấu giá trị tuyệt đối. Dạng 9: Giá trị lớn nhất, giá trị nhỏ nhất của biểu thức. Dạng 10: Các bài toán liên quan đến hàm số. [ads] PHẦN II – HÌNH HỌC A. Kiến thức cần nhớ . 1. Hệ thức lượng trong tam giác vuông. 2. Tỉ số lượng giác của góc nhọn. 3. Hệ thức về cạnh và góc trong tam giác vuông. 4. Đường tròn. 5. Tiếp tuyến của đường tròn. 6. Góc với đường tròn. 7. Độ dài đường tròn và độ dài cung tròn. 8. Diện tích hình tròn và diện tích hình quạt tròn. 9. Các loại đường tròn. 10. Các loại hình không gian. 11. Tứ giác nội tiếp. B. Các dạng bài tập . Dạng 1: Chứng minh hai góc bằng nhau. Dạng 2: Chứng minh hai đoạn thẳng bằng nhau. Dạng 3: Chứng minh hai đường thẳng song song. Dạng 4: Chứng minh hai đường thẳng vuông góc. Dạng 5: Chứng minh ba đường thẳng đồng quy. Dạng 6: Chứng minh hai tam giác bằng nhau. Dạng 7: Chứng minh hai tam giác đồng dạng. Dạng 8: Chứng minh đẳng thức hình học. Dạng 9: Chứng minh tứ giác nội tiếp. Dạng 10: Chứng minh đường thẳng d là tiếp tuyến của đường tròn tâm O, bán kính R. Dạng 11: Các bài toán tính toán độ dài cạnh, độ lớn góc.
Giải bài toán chứa căn - Nguyễn Tiến
Tài liệu gồm 89 trang được biên soạn bởi thầy giáo Nguyễn Tiến tổng hợp kiến thức chuyên đề căn thức, giúp học sinh lớp 9 nắm được phương pháp giải các bài toán chứa căn, tài liệu không có các bài tập dạng nâng cao, phức tạp, phù hợp với các đối tượng học sinh học lớp 9 và học ôn thi vào 10 các trường công lập trên cả nước với các dạng đề về căn bậc hai không khó. PHÂN DẠNG TOÁN CHỨA CĂN. A. TÌM HIỂU VỀ CĂN BẬC HAI. B. TÌM ĐIỀU KIỆN ĐỂ BIỂU THỨC XÁC ĐỊNH (CÓ NGHĨA, TỒN TẠI). C. CÁC BÀI TOÁN RÚT GỌN BIỂU THỨC CHỨA CĂN. DẠNG 1 : RÚT GỌN BIỂU THỨC CHỨA SỐ. + Loại 1: Dạng chứa căn số học đơn giản. + Loại 2: Dạng “biểu thức số trong căn” tiềm ẩn “là hằng đẳng thức”. + Loại 3: Dạng sử dụng biểu thức liên hợp, trục căn thức, quy đồng. + Loại 4: Chứng minh đẳng thức số. + Loại 5: Chứng minh bất đẳng thức. + Loại 6: Căn bậc ba. DẠNG 2 : CÁC DẠNG TOÁN CĂN CHỨA CHỮ (CHỨA ẨN). DẠNG TOÁN GIẢI PHƯƠNG TRÌNH CHỨA CĂN THỨC. + Loại 1: Phương trình trong căn có thể viết dưới dạng bình phương của một biểu thức. + Loại 2: Phương trình dạng √f(x) = √g(x). + Loại 3: Phương trình chứa biểu thức dưới dấu căn không viết được dưới dạng bình phương (trong phương trình chỉ chứa một căn thức). + Loại 4: Phương trình chứa nhiều căn thức, các căn thức có thể đưa về dạng giống nhau. [ads] + Loại 5: Phương trình chứa các căn khác nhau, biểu thức trong căn không viết được dưới dạng bình phương. + Loại 6: Quy về phương trình bậc hai bằng phương pháp đặt ẩn phụ. + Loại 7: Phương trình chứa căn mà biểu thức trong căn ở dạng thương hoặc dạng tích. + Loại 8: Giải các phương trình căn bậc ba. DẠNG TOÁN RÚT GỌN BIỂU THỨC CHỨA CĂN. + Loại 1: Sử dụng các hằng đẳng thức. + Loại 2: Sử dụng phương pháp quy đồng. + Loại 3: Làm xuất hiện nhân tử chung rồi đơn giản biểu thức chứa căn sau đó quy đồng. DẠNG TOÁN CHỨA CĂN VÀ BÀI TOÁN PHỤ. + Bài toán 1: Tìm ẩn để biểu thức thỏa mãn một điều kiện cho trước (lớn hơn, nhỏ hơn, bằng một giá trị cho trước). + Bài toán 2. Tính giá trị của biểu thức tại giá trị cho trước. + Bài toán 3: Tìm a nguyên để biểu thức nguyên. + Bài toán 4: Tìm giá trị lớn nhất, nhỏ nhất. PHẦN BÀI TẬP. BÀI TOÁN TỔNG HỢP – TỰ GIẢI. PHẦN ĐÁP ÁN – HƯỚNG DẪN GIẢI. DẠNG TOÁN RÚT GỌN BIỂU THỨC CHỨA SỐ.  + Loại 1: Dạng chứa căn số học đơn giản. + Loại 2: Dạng “biểu thức số trong căn” tiềm ẩn “là hằng đẳng thức”. + Loại 3: Dạng sử dụng biểu thức liên hợp, trục căn thức, quy đồng. DẠNG TOÁN RÚT GỌN BIỂU THỨC CHỨA CĂN. + Loại 1: Sử dụng các Hằng đẳng thức. + Loại 2: Sử dụng phương pháp quy đồng. + Loại 3: Làm xuất hiện nhân tử chung rồi đơn giản biểu thức chứa căn sau đó quy đồng. DẠNG TOÁN CHỨA CĂN VÀ BÀI TOÁN PHỤ.
Chuyên đề cực trị Hình học 9
Tài liệu gồm 21 trang hướng dẫn phương pháp giải bài toán cực trị Hình học 9, đây là lớp các bài toán nâng cao trong đề thi Toán 9 và đề tuyển sinh vào lớp 10 môn Toán. A – Phương pháp giải bài toán cực trị hình học 1- Dạng chung của bài toán cực trị hình học Trong tất cả các hình có chung một tính chất , tìm những hình mà một đại lượng nào đó (độ dài đoạn thẳng , số đo góc, số đo diện tích …) có giá trị lớn nhất hoặc giá trị nhỏ nhất.” và có thể được cho dưới các dạng: a) Bài toán về dựng hình Ví dụ : Cho đường tròn (O) và điểm P nằm trong đường tròn, xác định vị trí của dây đi qua điểm P sao cho dây đó có độ dài nhỏ nhất. b) Bài toán vể chứng minh  Ví dụ : Chứng minh rằng trong các dây đi qua điểm P trong một đường tròn (O), dây vuông góc với OP có độ dài nhỏ nhất. c) Bài toán về tính toán Ví dụ : Cho đường tròn (O;R) và điểm P nằm trong đường tròn có OP = h. Tính độ dài nhỏ nhất của dây đi qua P. 2 – Hướng giải bài toán cực trị hình học a) Khi tìm vị trí của hình H trên miền D sao cho biểu thức f có giá trị lớn nhất ta phải chứng tỏ được: + Với mọi vị trí của hình H trên miền D thì f ≤ m (m là hằng số) + Xác định vị trí của hình H trên miền D sao cho f = m b) Khi tìm vị trí của hình H trên miền D sao cho biểu thức f có giá trị nhỏ nhất ta phải chứng tỏ được: + Với mọi vị trí của hình H trên miền D thì f ≥ m (m là hằng số) + Xác định vị trí của hình H trên miền D để f = m [ads] 3 – Cách trình bày lời giải bài toán cực trị hình học + Cách 1 :Trong các hình có tính chất của đề bài,chỉ ra một hình rồi chứng minh mọi hình khác đều có giá trị của đại lượng phải tìm cực trị nhỏ hơn (hoặc lớn hơn) giá trị của đại lượng đó của hình đã chỉ ra. + Cách 2 : Biến đổi tương đương điều kiện để đại lượng này đạt cực trị bởi đại lượng khác đạt cực trị cho đến khi trả lời được câu hỏi mà đề bài yêu cầu. B – Các kiến thức thường dùng giải bài toán cực trị hình học 1 – Sử dụng quan hệ giữa đường vuông góc, đường xiên, hình chiếu 2 – Sử dụng quan hệ giữa đường thẳng và đường gấp khúc 3 – Sử dụng các bất đẳng thức trong đường tròn 4 – Sử dụng bất đẳng thức về lũy thừa bậc hai 5 – Sử dụng bất đẳng thức Cô-si 6 – Sử dụng tỉ số lượng giác C – Bài tập cực trị hình học 9 có lời giải chi tiết
Sơ đồ tư duy Toán 9
THCS. giới thiệu đến bạn đọc bộ sơ đồ tư duy Toán 9: Đại số 9 và Hình học 9. Học toán qua qua sơ đồ tư duy Toán 9 là một phương pháp học tập hiện đại, giúp học sinh nhớ nhanh và khắc sâu các kiến thức Toán 9 được gói gọn trong các hình ảnh, ngoài ra còn giúp học sinh nhận ra được mối liên hệ giữa các kiến thức Toán 9. 1. Sơ đồ tư duy căn bậc hai và căn bậc ba 2. Sơ đồ tư duy hàm số   3. Sơ đồ tư duy tam giác [ads] 4. Sơ đồ tư duy tứ giác 5. Sơ đồ tư duy đường tròn