Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu Toán 9 chủ đề đồ thị của hàm số y ax + b (a khác 0)

Tài liệu gồm 23 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề đồ thị của hàm số y = ax + b (a khác 0) trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Đồ thị của hàm số bậc nhất. 2. Cách vẽ đồ thị hàm số bậc nhất y = ax + b (a khác 0). 3. Chú ý. B. Bài tập và các dạng toán. Dạng 1 : Vẽ đồ thị hàm số bậc nhất. Dạng 2 : Tìm tọa độ giao điểm của hai đường thẳng. Cách giải: Cho hai đường thẳng d y ax b và d y ax b. Để tìm tọa độ giao điểm của d và d’, ta làm như sau: Cách 1: Dùng phương pháp đồ thị (thường sử dụng trong trường hợp d và d’ cắt nhau tại điểm có tọa độ nguyên). – Vẽ d và d’ trên cùng một hệ trục tọa độ. – Xác định tọa độ giao điểm trên hình vẽ. – Chứng tỏ tọa độ giao điểm đó cùng thuộc d và d’. Cách 2: Dùng phương pháp đại số. – Xét phương trình hoành độ giao điểm của d và d’: ax b a x b. – Từ phương trình hoành độ giao điểm, tìm được x và thay vào phương trình của d (hoặc d’) để tìm y. – Kết luận tọa độ giao điểm của d và d’. Dạng 3 : Xét tính đồng quy của ba đường thẳng. Cách giải: Chú ý: Ba đường thẳng đồng quy là ba đường thẳng phân biệt và cùng đi qua 1 điểm. Để xét tính đồng quy của ba đường thẳng (phân biệt) cho trước, ta làm như sau: + Tìm tọa độ giao điểm của 2 trong 3 đường thẳng đã cho. + Kiểm tra xem nếu giao điểm vừa tìm được thuộc đường thẳng còn lại thì kết luận ba đường thẳng đó đồng quy. Dạng 4 : Tính khoảng cách từ gốc tọa độ O đến một đường thẳng không đi qua O. Cách giải: Để tính khoảng cách từ O đến đường thẳng d (không đi qua O) ta làm như sau: Bước 1: Tìm A B lần lượt là giao điểm của d với Ox và Oy. Bước 2: Gọi H là hình chiếu vuông góc của O trên d. Khi đó: 222 1 11 OH OA OB. Dạng 5 : Tìm điểm cố định mà hàm số luôn đi qua phụ thuộc vào tham số m. Cách giải: 1. Khái niệm điểm cố định: Điểm Mxy là điểm cố định của (d y ax b) (a b phụ thuộc vào tham số m a 0) khi và chỉ khi điểm M luôn thuộc (d) với mọi điều kiện của tham số m. Hoặc tương đương với điều kiện: 0 0 y ax b với mội điều kiện của tham số. 2. Cách tìm điểm cố định. Gọi Ix y là điểm cố định của 0 d y ax b m. Biến đổi 0 0 y ax b về dạng Ax y m Bx y hoặc 2 0 0 Ax y m Bx y m Cx y. Từ đó tìm được 0 0 x y rồi kết luận. 3. Chú ý: Cách tính khoảng cách từ Ax y đến Bx y trên hệ trục tọa độ Oxy 2 2 12 12 AB y y x. Dạng 6 : Tìm tham số m sao cho khoảng cách từ gốc tọa độ đến đường thẳng cho trước là lớn nhất. Cách giải: Cho đường thẳng (d y ax b) phụ thuộc tham số m. Muốn tìm m để khoảng cách từ O đến d là lớn nhất, ta có thể làm theo một trong hai cách sau. Cách 1: Phương pháp hình học. – Gọi A B lần lượt là giao điểm của d với Ox và Oy; H là hình chiếu vuông góc của O trên d. – Ta có khoảng cách từ O đến d là OH và được tính bởi công thức sau: 222 1 11 OH OB OC. – Từ đó tìm điều kiện của m để OH đạt giá trị lớn nhất. Cách 2: Dùng phương pháp điểm cố định. – Tìm được I là điểm cố định mà d luôn đi qua. – Gọi H là hình chiếu vuông góc của O trên d OH OI hằng số d ⇒ OH OI. – Ta có: OH OI d max là đường thẳng qua I và vuông góc với OI. Từ đó tìm được tham số m. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề đồ thị hàm số y ax + b (a khác 0)
Tài liệu gồm 46 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề đồ thị hàm số y = ax + b (a khác 0), hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 2 bài số 3. A. KIẾN THỨC CẦN NHỚ 1. Đồ thị hàm số bậc nhất. 2. Cách vẽ đồ thị của hàm số bậc nhất. 3. Chú ý. B. CÁC DẠNG BÀI TẬP MINH HỌA Dạng 1: Vẽ đồ thị hàm số bậc nhất. Dạng 2: Tìm tham số m để hàm số là hàm số bậc nhất, đồng biến, nghịch biến. Dạng 3 : Xét tính đồng quy của ba đường thẳng. Dạng 4: Tìm điểm cố định của đường thẳng phụ thuộc tham số. Dạng 5: Tính chu vi và diện tích tam giác. C. TRẮC NGHIỆM RÈN PHẢN XẠ
Chuyên đề đường thẳng song song và đường thẳng cắt nhau
Tài liệu gồm 25 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề đường thẳng song song và đường thẳng cắt nhau, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 2 bài số 4. A. KIẾN THỨC CẦN NHỚ 1. Hệ số góc của đường thẳng y = ax + b (a khác 0). 2. Đường thẳng song song và đường thẳng cắt nhau. B. CÁC DẠNG MINH HỌA Dạng 1 : Xét vị trí tương đối của hai đường thẳng. Phương pháp giải: Cho hai đường thẳng: d: y = ax + b với a khác 0 và d’: y = a’x + b’ với a’ khác 0, khi đó ta có: 1. d và d’ song song khi và chỉ khi a = a’ và b khác b’. 2. d và d’ trùng nhau khi và chỉ khi a = a’ và b = b’. 3. d và d’ cắt nhau khi và chỉ khi a khác a’ . Đặc biệt d và d’ vuông góc với nhau khi và chỉ khi a.a’ = -1. Dạng 2 : Xác định phương trình đường thẳng. Phương pháp giải: Để xác định phương trình đường thẳng, ta thường làm như sau: Bước 1: Gọi d: y = ax + b là phương trình đường thẳng cần tìm (a và b là hằng số). Bước 2: Từ giả thiết của đề bài, tìm được a và b từ đó đi đến kết luận. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU BÀI TỰ LUYỆN
Chuyên đề hệ số góc của đường thẳng y ax + b (a khác 0)
Tài liệu gồm 16 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề hệ số góc của đường thẳng y = ax + b (a khác 0), hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 2 bài số 5. A. TÓM TẮT LÍ THUYẾT B. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 : Tìm hệ số góc của đường thẳng. Phương pháp giải: Sử dụng các kiến thức liên quan đến vị trí tương đối giữa hai đừng thẳng và hệ số góc của đường thẳng. Dạng 2 : Xác định góc tạo bởi đường thẳng và tia Ox. Phương pháp giải: Để xác định góc giữa đường thẳng d và tia Ox, ta làm như sau: Cách 1. Vẽ d trên mặt phẳng tọa độ và sử dụng tỉ số lượng giác của tam giác vuông một cách phù hợp. Cách 2. Gọi α là góc tạo bởi tia Ox và d. Ta có: + Nếu α < 90° thì a > 0 và a = tanα. + Nếu α > 90° thì a < 0 và a = -tan(180° – α). Dạng 3 : Xác định đường thẳng biết hệ số góc. Phương pháp giải: Gọi phương trình đường thẳng cần tìm là d: y = ax + b. Ta cần xác định a và b dựa vào các kiến thức về góc và hệ số góc. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ
Chuyên đề phương trình bậc nhất hai ẩn
Tài liệu gồm 19 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề phương trình bậc nhất hai ẩn, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 3 bài số 1. A. KIẾN THỨC TRỌNG TÂM 1. Phương trình bậc nhất hai ẩn. 2. Tập nghiệm của phương trình bậc nhất hai ẩn. B. CÁC DẠNG BÀI TẬP MINH HỌA Dạng 1. Xác định nghiệm của phương trình bậc nhất hai ẩn. Dạng 2. Biện luận và vẽ đồ thị của hàm số bậc nhất. Dạng 3. Tìm nghiệm nguyên của phương trình bậc nhất hai ẩn. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. BÀI TẬP TỰ LUYỆN Xem thêm : Chuyên đề hệ phương trình bậc nhất hai ẩn