Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 12 lần 1 ôn thi THPTQG 2020 trường Triệu Sơn 2 - Thanh Hóa

Tháng 11 năm 2019, trường THPT Triệu Sơn 2, tỉnh Thanh Hóa tổ chức kỳ thi khảo sát chất lượng môn Toán 12 lần 1 theo định hướng thi THPT Quốc gia năm học 2019 – 2020. Đề KSCL Toán 12 lần 1 ôn thi THPTQG 2020 trường THPT Triệu Sơn 2 – Thanh Hóa có mã đề 132, đề gồm 06 trang với 50 câu trắc nghiệm, nội dung tập trung hầu hết vào chương trình Toán 12 đã học, ngoài ra còn có một số ít bài toán trong chương trình Toán 10, Toán 11. Trích dẫn đề KSCL Toán 12 lần 1 ôn thi THPTQG 2020 trường Triệu Sơn 2 – Thanh Hóa : + Một công ty muốn thiết kế vỏ hộp đựng sữa loại 900g với thể tích 2,1 dm3. Bao bì được thiết kế bởi một trong hai mô hình sau: Dạng hình hộp chữ nhật có đáy là hình vuông hoặc dạng hình trụ và được sản xuất cùng một nguyên vật liệu. Hỏi thiết kế theo mô hình nào sẽ tiết kiệm được nguyên vật liệu nhất? Và thiết kế mô hình đó theo kích thước như thế nào? A. Hình hộp chữ nhật có cạnh bên bằng cạnh đáy. B. Hình trụ có chiều cao bằng đường kính đáy. C. Hình hộp chữ nhật có cạnh bên gấp hai lần cạnh đáy. D. Hình trụ có chiều cao bằng bán kính đáy. [ads] + Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên như hình bên dưới. Khẳng định nào sau đây là khẳng định sai? A. Tất cả các giá trị của tham số m để phương trình f(x) = m + 1 có nghiệm là -2 ≤ m ≤ 5. B. Đồ thị hàm đã cho có hai tiệm cận ngang là các đường thẳng y = 2 và y = 6. C. Hàm số đã cho có giá trị lớn nhất bằng 6 và giá trị nhỏ nhất bằng -1. D. Hàm số đã cho có đúng hai cực trị. + Một người gửi 130 triệu đồng vào ngân hàng theo hình thức lãi kép liên tục trong vòng 2 năm 9 tháng. Hỏi người này gửi theo hình thức nào thì lợi nhuận cao nhất? Biết rằng nếu rút trước kì hạn thì hưởng lãi suất không kì hạn là 3%/năm (đơn vị lấy chẵn 1000 đồng). A. Kì hạn 3 tháng lãi suất 10%/năm. B. Kì hạn 6 tháng lãi suất 11%/năm. C. Kì hạn 4 tháng lãi suất 10,5%/năm. D. Kì hạn 1 năm lãi suất 12%/năm.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 12 năm 2020 - 2021 trường THPT Thiệu Hóa - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chất lượng (KSCL) môn Toán lớp 12 năm học 2020 – 2021 trường THPT Thiệu Hóa – Thanh Hóa. Trích dẫn đề khảo sát Toán 12 năm 2020 – 2021 trường THPT Thiệu Hóa – Thanh Hóa : + Trong không gian Oxyz, cho mặt phẳng (P): x + y – z – 3 = 0 và hai điểm A(1;1;1) và B(-3;-3;-3). Mặt cầu (S) đi qua A, B và tiếp xúc với (P) tại điểm C. Biết rằng C luôn thuộc một đường tròn cố định, bán kính của đường tròn đó bằng? + Từ một tấm tôn có kích thước 90 cm x 300 cm, người ta làm một máng chứa nước thải trên mái nhà, mặt cắt ngang của máng là hình thang cân ABCD đáy lớn AD, AB = BC = CD = 30cm (minh hoạ hình bên). Thể tích lớn nhất của máng bằng? + Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên. Tìm tất cả các giá trị của tham số m để hàm số h(x) = |f2(x) + f(x) + m| có đúng 3 điểm cực trị.
Đề khảo sát Toán 12 lần 3 năm 2020 - 2021 trường Lê Quý Đôn - Quảng Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát Toán 12 lần 3 năm học 2020 – 2021 trường THPT Lê Quý Đôn – Quảng Ninh; kỳ thi nhằm giúp các em học sinh rèn luyện để chuẩn bị cho kỳ thi tốt nghiệp THPT 2021 môn Toán. Trích dẫn đề khảo sát Toán 12 lần 3 năm 2020 – 2021 trường Lê Quý Đôn – Quảng Ninh : + Một nhóm có 10 học sinh gồm 6 nam (trong đó có Bình) và 4 nữ (trong đó có An) được xếp ngẫu nhiên vào 10 ghế trên một hàng ngang để dự lễ khai giảng năm học. Xác suất để xếp được giữa 2 bạn nữ gần nhau có đúng 2 bạn nam, đồng thời Bình không ngồi cạnh An là? + Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ, biết f(x) đạt cực tiểu tại điểm x = 1 và thỏa mãn [f(x) + 1] và [f(x) – 1] lần lượt chia hết cho (x – 1)2 và (x + 1)2. Gọi S1, S2 lần lượt là diện tích hình phẳng như trong hình bên dưới. Tính 2S1 – S2. + Người ta cần đổ một ống cống thoát nước hình trụ với chiều cao 2m, độ dày thành ống là 10cm. Đường kính ống là 50cm. Tính lượng bê tông cần dùng để làm ra ống thoát nước đó?
Đề khảo sát Toán 12 lần 3 năm 2020 - 2021 trường THPT Thành Nhân - TP HCM
Nhằm chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán năm 2021 do Bộ Giáo dục và Đào tạo tổ chức, thứ Năm ngày 09 tháng 06 năm 2021, trường THPT Thành Nhân, quận Tân Phú, thành phố Hồ Chí Minh tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 12 năm học 2020 – 2021 lần thứ ba. Đề khảo sát Toán 12 lần 3 năm 2020 – 2021 trường THPT Thành Nhân – TP HCM mã đề 101 gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề khảo sát Toán 12 lần 3 năm 2020 – 2021 trường THPT Thành Nhân – TP HCM : + Trong không gian Oxyz cho điểm A(0;5;8) và hai mặt cầu 2 2 2 S x y z 25 0 2 2 2 S x y z y 16 23 0. Gọi M là điểm thuộc cả hai mặt cầu S S. Khoảng cách AM nhỏ nhất bằng? + Gọi S là tập hợp các số thực m sao cho với mỗi m S có đúng một số phức thỏa mãn z m 4 và 6 z z là số thuần ảo. Tính tổng của các phần tử của tập S. + Trong không gian Oxyz cho điểm B(0;9;0); M(1;5;4). Mặt phẳng P qua hai điểm B M P cắt chiều dương các trục Ox; Oz lần lượt tại A C. Thể tích tứ diện OABC nhỏ nhất bằng?
Đề khảo sát chất lượng Toán 12 năm 2020 - 2021 sở GDĐT Phú Thọ
Nhằm chuẩn bị cho kỳ thi tốt nghiệp THPT năm 2021 môn Toán, thứ Tư ngày 02 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Phú Thọ tổ chức kỳ thi khảo sát chất lượng học sinh lớp 12 THPT môn Toán năm học 2020 – 2021. Đề khảo sát chất lượng Toán 12 năm 2020 – 2021 sở GD&ĐT Phú Thọ mã đề 135 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết (lời giải được biên soạn bởi quý thầy, cô giáo Nhóm Giáo Viên Toán Việt Nam). Trích dẫn đề khảo sát chất lượng Toán 12 năm 2020 – 2021 sở GD&ĐT Phú Thọ : + Trong không gian Oxyz, cho mặt cầu 2 2 2 S x y z 2 1 2 16 và hai điểm A B 5 0 3 9 3 4. Gọi P Q lần lượt là hai mặt phẳng chứa AB và tiếp xúc với S tại M N. Thể tích tứ diện ABMN. + Cho phương trình 2 2 6 1 2 2 12 1 2 2 2 2 2 7log 6 log 3 x x x x m m x x m. Có bao nhiêu giá giá trị nguyên dương của tham số m để phương trình đã cho có đúng hai nghiệm thực phân biệt? + Cho đường cong C 3 2 y x x 4 3 và đường thẳng d đi qua gốc tọa độ tạo thành hai miền phẳng có diện tích 1 2 S S như hình vẽ. Khi 2 135 2 S thì 1 S bằng?