Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu Toán 9 chủ đề giải hệ phương trình bằng phương pháp cộng đại số

Tài liệu gồm 20 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề giải hệ phương trình bằng phương pháp cộng đại số trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. B. Bài tập và các dạng toán. Dạng 1 : Giải hệ phương trình bằng phương pháp cộng đại số. Cách giải: – Nếu hệ số của cùng một ẩn bằng nhau thì ta trừ vế với vế. – Nếu hệ số của cùng một ẩn đối nhau thì ta cộng vế với vế. – Nếu không có hệ số của ẩn nào bằng nhau hoặc đối nhau thì ta nhân hai vế của phương trình với số thích hợp rồi đưa về trường hợp thứ nhất. Dạng 2 : Giải hệ phương trình quy về hệ phương trình bậc nhất hai ẩn. Cách giải: Ta thực hiện theo các bước sau: + Bước 1: Biến đổi hệ phương trình đã cho về hệ phương trình bậc nhất hai ẩn. + Bước 2: Giải hệ phương trình bậc nhất hai ẩn bằng phương pháp cộng đại số. Dạng 3 : Giải hệ phương trình bằng phương pháp đặt ẩn phụ. Cách giải: Ta thực hiện theo hai bước: – Chọn ẩn phụ cho các biểu thức của hệ phương trình đã cho để được hệ phương trình bậc nhất hai ẩn mới ở dạng cơ bản. – Giải hệ phương trình bậc nhất hai ẩn bằng phương pháp cộng đại số, từ đó tìm nghiệm của hệ phương trình đã cho. Dạng 4 : Tìm điều kiện của tham số để hệ phương trình thỏa mãn điều kiện cho trước. Cách giải: Ta thường sử dụng các kiến thức sau: – Hệ phương trình bậc nhất hai ẩn có nghiệm 0 0 ax by c x y ax by c. – Đường thẳng d ax by c đi qua điểm M x y ax by c. BÀI TẬP VỀ NHÀ.

Nguồn: toanmath.com

Đọc Sách

Sơ đồ tư duy Toán 9
THCS. giới thiệu đến bạn đọc bộ sơ đồ tư duy Toán 9: Đại số 9 và Hình học 9. Học toán qua qua sơ đồ tư duy Toán 9 là một phương pháp học tập hiện đại, giúp học sinh nhớ nhanh và khắc sâu các kiến thức Toán 9 được gói gọn trong các hình ảnh, ngoài ra còn giúp học sinh nhận ra được mối liên hệ giữa các kiến thức Toán 9. 1. Sơ đồ tư duy căn bậc hai và căn bậc ba 2. Sơ đồ tư duy hàm số   3. Sơ đồ tư duy tam giác [ads] 4. Sơ đồ tư duy tứ giác 5. Sơ đồ tư duy đường tròn
Tài liệu ôn thi cấp tốc Đại số 9 - Huỳnh Đức Khánh
Tài liệu gồm 29 trang tuyển chọn các bài tập điển hình trong các nội dung Đại số 9, giúp học sinh ôn tập nhanh kiến thức Toán 9. Nội dung tài liệu : Phần 1. Rút gọn căn số Phần 2. Rút gọn biểu thức Phần 3. Hàm số bậc nhất Phần 4. Hệ phương trình bậc nhất hai ẩn Phần 5. Hàm số bậc hai Phần 6. Phương trình bậc hai Phần 7. Giải bài toán bằng cách lập phương trình – lập hệ phương trình [ads] + Bài toán hình học + Bài toán vận tốc + Bài toán công nhân làm việc – bài toán vòi nước + Bài toán luân chuyển xe + Bài toán tăng năng suất + Một số bài toán khác
Chuyên đề giải toán bằng cách lập phương trình, hệ phương trình
Tài liệu gồm 26 trang hướng dẫn giải các bài toán bằng cách lập phương trình, hệ phương trình trong chương trình Toán 9. Phương pháp giải chung : Bước 1. Lập phương trình hoặc hệ phương trình + Chọn ẩn, đơn vị cho ẩn, điều kiện thích hợp cho ẩn + Biểu đạt các đại lượng khác theo ẩn (chú ý thống nhất đơn vị) + Dựa vào dữ kiện, điều kiện của bài toán để lập phương trình hoặc hệ phương trình Bước 2. Giải phương trình hoặc hệ phương trình Bước 3. Nhận định, so sánh kết quả bài toán, tìm kết quả thích hợp, trả lời (bằng câu viết) nêu rõ đơn vị của đáp số Các dạng toán cơ bản : + Dạng toán chuyển động + Dạng toán liên quan đến các kiến thức hình học + Dạng toán công việc làm chung, làm riêng + Dạng toán chảy chung, chảy riêng của vòi nước + Dạng toán tìm số + Dạng toán sử dụng các kiến thức về % + Dạng toán sử dụng các kiến thức vật lý, hóa học [ads] Các công thức cần lưu ý khi giải bài toán bằng cách lập phương trình, hệ phương trình : + Thời gian t, quãng đường s, vận tốc v: s = v.t, v = s/t, t = s/v + Chuyển động của tàu thuyền khi có tác động dòng nước: V xuôi dòng = V thực + V dòng nước V ngược dòng = V thực – V dòng nước + Khối lượng công việc A, năng suất lao động N, thời gian làm việc T: A = N.T
Các dạng toán căn bậc ba - Nguyễn Chí Thành
Tài liệu gồm 17 trang tuyển tập các bài toán về chủ đề căn bậc 3  (Chương trình Toán 9 – Tập 1) được giải chi tiết. Các dạng toán gồm có: + Dạng 1. Thực hiện phép tính + Dạng 2. Chứng minh đẳng thức + Dạng 3. So sánh hai căn bậc 3 + Dạng 4. Giải phương trình