Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh vào lớp 10 năm 2019 trường THPT chuyên KHTN - Hà Nội

Chủ Nhật ngày 26 tháng 05 năm 2019, trường THPT chuyên KHTN, trực thuộc Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội đã tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2019 – 2020, nhằm tuyển chọn các em học sinh đạt yêu cầu để chuẩn bị cho năm học mới. Đề Toán tuyển sinh vào lớp 10 năm 2019 trường THPT chuyên KHTN – Hà Nội gồm 1 trang với 4 bài toán dạng tự luận, thời gian làm bài 120 phút, đây là đề thi vòng 1 – dành cho tất cả các thí sinh tham dự kỳ thi. [ads] Trích dẫn đề tuyển sinh vào lớp 10 năm 2019 trường THPT chuyên KHTN – Hà Nội : + Cho hình vuông ABCD, đường tròn (O) nội tiếp hình vuông ABCD tiếp xúc với các cạnh AB, AD lần lượt tại các điểm E, F. Gọi giao điểm của CE và BF là G. 1) Chứng minh rằng năm điểm A, F, O, C, E cùng nằm trên một đường tròn. 2) Gọi giao điểm của FB và đường tròn (O) là M (M khác F). Chứng minh rằng M là trung điểm của đoạn thẳng BG. 3) Chứng minh rằng trực tâm tam giác GAF nằm trên đường tròn (O). + Với x, y là các số thực thỏa mãn 1 ≤ y ≤ 2, xy + 2 ≥ 2y, tìm giá trị nhỏ nhất của biểu thức: M = (x^2 + 4)/(y^2 + 1). + Tìm tất cả các cặp (x, y) nguyên thỏa mãn (x^2 – x + 1)(y^2 + xy) = 3x – 1.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 trường ĐHSP Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 trường ĐHSP Hà Nội; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 trường ĐHSP Hà Nội : + Một tấm biển quảng cáo có dạng hình tròn tâm O, bán kính bằng 1,6m. Giả sử hình chữ nhật ABCD nội tiếp đường tròn tâm O bán kính bằng 1,6m sao cho BOC 45 (hình bên). Người ta cần sơn màu toàn bộ tấm biển quảng cáo và chỉ sơn một mặt như ở hình bên. Biết mức chi phí sơn phần hình tô đậm là 150 nghìn đồng/ 2m và phần còn lại là 200 nghìn đồng/ 2m. Hỏi số tiền (làm tròn đến đơn vị nghìn đồng) để sơn toàn bộ biển quảng cáo bằng bao nhiêu? Cho pi = 3,14. + Cho ba điểm A, B, C cố định sao cho A, B, C thẳng hàng, B nằm giữa A và C. Gọi d là đường thẳng đi qua C và vuông góc với AB. Lấy điểm M tùy ý trên d. Đường thẳng đi qua B và vuông góc với AM cắt các đường thẳng AM, d lần lượt tại I, N. Đường thẳng MB cắt AN tại K. a) Chứng minh rằng tứ giác MIKN nội tiếp. b) Chứng minh rằng CM CN AC BC. c) Gọi O là tâm của đường tròn ngoại tiếp tam giác AMN. Vẽ hình bình hành MBNE. Gọi H là trung điểm của đoạn thẳng BE. Chứng minh rằng OH vuông góc với đường thẳng d và 1 2 OH AB. + Cho a và b là hai số hữu tỉ. Chứng minh rằng nếu a b 2 3 cũng là số hữu tỉ thì a b 0.
Đề tuyển sinh vào lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Bắc Kạn
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh vào lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Bắc Kạn; kỳ thi được diễn ra vào ngày 17 tháng 06 năm 2021.
Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Đà Nẵng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán năm học 2021 – 2022 sở GD&ĐT thành phố Đà Nẵng. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Đà Nẵng : + Tìm hai số tự nhiên, biết rằng tổng của chúng bằng 2021 và hiệu của số lớn và số bé bằng 15. + Một địa phương lên kế hoạch xét nghiệm SARS-CoV-2 cho 12000 người trong một thời gian quy định. Nhờ cải tiến phương pháp nên mỗi giờ xét nghiệm được thêm 1 000 người. Vì thế, địa phương này hoàn thành sớm hơn kế hoạch là 16 giờ. Hỏi theo kế hoạch, địa phương này phải xét nghiệm trong thời gian bao nhiêu giờ? + Cho tam giác nhọn ABC có AB < AC, các đường cao BD, CE (D thuộc AC, E thuộc AB) cắt nhau tại H. a) Chứng minh rằng tứ giác BEDC nội tiếp. b) Gọi M là trung điểm của BC. Đường tròn đường kính AH cắt AM tại điểm G (G khác A). Chứng minh rằng AE.AB = AC.AM. c) Hai đường thẳng DE và BC cắt nhau tại K. Chứng minh rằng MAC = GCM và đường thẳng nối tâm hai đường tròn ngoại tiếp hai tam giác MBB, MCD song song với đường thẳng KG.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2021 - 2022 sở GDĐT Hải Dương
Thứ Ba ngày 15 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Hải Dương tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2021 – 2022. Đề tuyển sinh lớp 10 THPT môn Toán năm 2021 – 2022 sở GD&ĐT Hải Dương gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi 120 phút (không kể thời gian phát đề), đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2021 – 2022 sở GD&ĐT Hải Dương : + Một mảnh đất hình chữ nhật có chu vi 24m. Nếu tăng chiều dài lên 2m và giảm chiều rộng đi 1m thì diện tích mảnh đất tăng thêm 1m2. Tìm độ dài các cạnh của mảnh đất hình chữ nhật ban đầu. + Cho phương trình 2 x m x m 2 1 3 0 (với m là tham số). Chứng minh rằng phương trình đã cho luôn có hai nghiệm phân biệt 1 x và 2 x với mọi m. Tìm các giá trị của tham số m sao cho: 1 2 x x 4. + Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn O R và hai đường cao AE, BF cắt nhau tại H (E BC F AC). a) Chứng minh rằng bốn điểm A, B, E, F cùng nằm trên một đường tròn. b) Chứng minh rằng: OC EF. 2. Cho tam giác ABC có B C là các góc nhọn và có diện tích không đổi. Tìm giá trị nhỏ nhất của biểu thức 2 2 2 P BC AC AB 2.