Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT An Giang

Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT An Giang Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT An Giang Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT An Giang Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT An Giang là một bài thi khá thú vị và đầy thách thức. Được chia thành 5 bài toán tự luận, với lời giải chi tiết của thầy Nguyễn Chí Dũng, đề thi đòi hỏi sự tư duy logic và kiến thức chắc chắn của thí sinh. Trích một số bài toán trong đề: + Bài toán đầu tiên yêu cầu chứng minh tứ giác AHEC nội tiếp, chứng minh hai góc ABD và DBC bằng nhau, chứng minh tam giác ABE cân và chứng minh AKEF là hình thoi. + Bài toán thứ hai liên quan đến ngọn Hải đăng Kê Gà ở tỉnh Bình Thuận, hỏi về khoảng cách mà một người quan sát có thể nhìn thấy trên mặt biển và cách xa nhìn thấy ngọn đèn từ tàu. Đề thi này không chỉ đánh giá kiến thức của thí sinh mà còn khuyến khích sự sáng tạo, tư duy logic và khả năng giải quyết vấn đề của họ. Các bài toán đều rất thú vị và đòi hỏi sự chú ý, cẩn thận trong việc giải quyết từng bước. Với đề thi này, thí sinh cần phải tự tin, kiên nhẫn và sẵn sàng đối mặt với thách thức để có thể hoàn thành tốt. Chính vì vậy, đề thi tuyển sinh môn Toán sở GD và ĐT An Giang năm học 2017-2018 là một bài kiểm tra thực sự ý nghĩa và hữu ích đối với thí sinh.

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Bình Định
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Bình Định gồm 6 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Một đám đất hình chữ nhật có chu vi là 24m. Nếu tăng độ dài một cạnh lên 2m và giảm độ dài cạnh còn lại 1m thì diện tích đám đất sẽ tăng thêm 1m2. Tính độ dài các cạnh ban đầu của đám đất. + Cho tam giác ABC (AB <AC) nội tiếp trong đường tròn tâm O. M là điểm nằm trên cung BC không chứa điểm A. Gọi D, E, F lần lượt là hình chiếu của M trên các đường thẳng BC, CA, AB. Chứng minh rằng: [ads] a) Bốn điểm M, D, B, F thuộc một đường tròn và bốn điểm M, D, E, C thuộc một đường tròn b) Ba điểm D,E,F thẳng hàng c) BC/MD = CA/ME + AB/MF
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Vĩnh Long
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Vĩnh Long gồm 6 bài toán tự luận. Trích một số bài toán trong đề: + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O;R), các đường cao AD, BM, CN cắt nhau tại H. a. Chứng minh rằng AM.AC=AN.AB b. Chứng minh rằng OA vuông góc với MN c. Gọi P là giao điểm của hai đường thẳng MN và BC. Đường thẳng đi qua N và song song với AC cắt AP, AD lần lượt tại I, G. Chứng minh rằng NI=NG
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Hà Nội
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Hà Nội gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Một xe ô tô và một xe máy cùng khởi hành từ A để đi đến B với vận tốc của mỗi xe không đổi trên toàn bộ quãng đường AB dài 120km. Do vận tốc xe ô tô lớn hơn vận tốc xe máy là 10km/h nên xe ô tô đến B sớm hơn xe máy 36 phút. Tính vận tốc của mỗi xe. + Cho đường tròn (O) ngoại tiếp tam giác nhọn ABC. Gọi M và N lần lượt là điểm chính giữa của cung nhỏ AB và cung nhỏ BC. Hai dây AN và CM cắt nhau tại điểm I. Dây MN cắt các cạnh AB và BC lần lượt tại các điểm H và K [ads] 1) Chứng minh bốn điểm C, N, K, I cùng thuộc một đường tròn 2) Chứng minh NB.NK = NM^2 3) Chứng minh tứ giác BHIK là hình thoi 4) Gọi P, Q lần lượt là tâm của các đường tròn ngoại tiếp tam giác MBK, tam giác MCK và E là trung điểm của đoạn PQ. Vẽ đường kính ND của đường tròn (O). Chứng minh ba điểm D, E, K thẳng hàng
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Bắc Ninh
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Bắc Ninh gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho tam giác vuông có số đo các cạnh là các số tự nhiên có hai chữ số. Nếu đổi chỗ hai chữ số của số đo cạnh huyền ta được số đo một cạnh góc vuông. Tính bán kính đường tròn ngoại tiếp tam giác đó. + Cho 2n+1 số nguyên, trong đó có đúng một số 0 và các số 1, 2, 3 … n mỗi số xuất hiện hai lần. Chứng minh rằng với mọi số tự nhiên n ta luôn sắp xếp được 2n+1 số nguyên trên thành một dãy sao cho với mọi m = 1, 2 … n có đúng m số nằm giữa hai số m.