Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập mặt nón, mặt trụ, mặt cầu - Diệp Tuân

Tài liệu gồm 259 trang, được biên soạn bởi thầy giáo Diệp Tuân, phân dạng và tuyển chọn các bài tập mặt nón, mặt trụ, mặt cầu trong chương trình Toán 12 phần Hình học chương 2. MỤC LỤC : CHƯƠNG II. MẶT NÓN, MẶT TRỤ VÀ MẶT CẦU 1. 1. MẶT TRÒN XOAY – MẶT NÓN. A. Lý thuyết 1. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 4. Dạng 1. Xác định các yếu tố cơ bản (r;l;h) của hình nón. Tính Sxq; Stp; V 4. Dạng 2. Thiết diện của mặt nón 24. + Trường hợp 1. Thiết diện qua trục của hình nón 24. + Trường hợp 2. Thiết diện qua đỉnh của hình nón 32. + Trường hợp 3. Thiết diện vuông góc với trục hình nón và song song mặt đáy 53. + Trường hợp 4. Thiết diện cắt mọi đường sinh của hình nón 58. + Trường hợp 5. Thiết diện song song với đường sinh của hình nón 58. Dạng 3. Sự tạo thành hình nón 59. + Trường hợp 1. Hình nón tạo thành khi quay vuông quanh cạnh góc vuông 59. + Trường hợp 2. Hình nón tạo thành khi quay bất kỳ 62. + Trường hợp 3. Hình nón tạo thành khi quay tam giác quanh đường cao 64. + Trường hợp 4. Hình nón tạo thành khi quay hình thang quanh đường cao 65. Dạng 4. Mặt nón ngoại tiếp và nội tiếp 68. 2. MẶT TRỤ. A. Lý thuyết 81. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 83. Dạng 1. Xác định các yếu tố cơ bản (r;l;h) của hình trụ. Tính Sxq; Stp; V 83. Dạng 2. Sự tạo thành hình trụ 94. Dạng 3. Thiết diện của mặt trụ 108. + Trường hợp 1. Thiết diện qua trục của hình trụ 108. + Trường hợp 2. Thiết diện không qua trục và song song với trục của hình trụ 116. + Trường hợp 3. Thiết diện cắt trục của hình trụ và tạo với hình trụ một góc 122. Dạng 4. Mặt trụ nội tiếp và ngoại tiếp 138. + Trường hợp 1. Mặt trụ ngoại tiếp hình hộp chữ nhật 138. + Trường hợp 2. Mặt trụ nội tiếp hình lăng trụ đứng 139. + Trường hợp 3. Mặt trụ ngoại tiếp hình lăng trụ đứng có đáy là tam giác đều 141. 3. MẶT CẦU. A. Lý thuyết 160. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 165. Dạng 1. Chứng minh các điểm nằm trên mặt cầu. Tính S; V 165. Dạng 2. Xác định mặt cầu ngoại tiếp khối đa diện 182. + Trường hợp 1. Mặt cầu ngoại tiếp hình lăng trụ đứng 182. + Trường hợp 2. Mặt cầu ngoại tiếp hình chóp có cạnh bên vuông góc với đáy 190. + Trường hợp 3. Mặt cầu ngoại tiếp hình chóp có các cạnh bên cách đều các đỉnh 209. + Trường hợp 4. Mặt cầu ngoại tiếp hình chóp mặt bên vuông góc với mặt đáy 219. + Trường hợp 5. Mặt cầu ngoại tiếp hình chóp bất kỳ 225. + Trường hợp 6. Mặt cầu ngoại tiếp hình nón 230. + Trường hợp 7. Mặt cầu ngoại tiếp hình trụ 236. Dạng 3. Xác định mặt cầu nội tiếp hình lăng trụ, hình trụ và hình nón 239.

Nguồn: toanmath.com

Đọc Sách

Các dạng bài tập VDC lũy thừa và hàm số lũy thừa
Tài liệu gồm 17 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) lũy thừa và hàm số lũy thừa, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 2 (hàm số lũy thừa, hàm số mũ và hàm số lôgarit) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập VDC lũy thừa và hàm số lũy thừa: CHỦ ĐỀ 1 . LŨY THỪA. A. KIẾN THỨC CƠ BẢN CẦN NẮM 1. Khái niệm lũy thừa. 2. Tính chất của lũy thừa với số mũ thực. B. PHÂN DẠNG VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1. Các phép toán biến đổi lũy thừa. Dạng 2. So sánh, đẳng thức và bất đẳng thức đơn giản. CHỦ ĐỀ 2 . HÀM SỐ LŨY THỪA. A. KIẾN THỨC CƠ BẢN CẦN NẮM 1. Khái niệm hàm số lũy thừa. 2. Đạo hàm của hàm số lũy thừa. 3. Khảo sát hàm số lũy thừa. B. PHÂN DẠNG VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1. Tìm tập xác định của hàm số lũy thừa. Dạng 2. Đồ thị hàm số lũy thừa.
Hệ thống bài tập trắc nghiệm VDC PT - BPT - HPT mũ - logarit (phần 11 - 20)
Tài liệu gồm 21 trang được biên soạn bởi thầy giáo Lương Tuấn Đức (facebook: Giang Sơn), tuyển chọn hệ thống bài tập trắc nghiệm vận dụng cao, phân loại phương trình, bất phương trình, hệ phương trình mũ – logarit (từ phần 11 đến phần 20), giúp học sinh tiếp cận với các dạng toán nâng cao trong chương trình Giải tích 12 chương 2 (hàm số lũy thừa, hàm số mũ và hàm số logarit) và ôn thi tốt nghiệp THPT môn Toán. Trích dẫn tài liệu hệ thống bài tập trắc nghiệm vận dụng cao, phân loại phương trình, bất phương trình, hệ phương trình mũ – logarit (phần 11 – 20): + Đường thẳng x = k cắt đồ thị hàm số y = log5 x và đồ thị hàm số y = log5 (x + 4). Khoảng cách giữa các giao điểm là 1/2. Biết k = a + √b, trong đó a và b là các số nguyên. Khi đó tổng a + b bằng? [ads] + Cho ba số thực dương x, y, z thỏa mãn log5 x = log12 y = log84 z = log85 (x + y + z). Khi đó giá trị biểu thức logxyz 2020 nằm trong khoảng nào sau đây? + Cho các số thực dương a, b thỏa mãn đẳng thức ln (ab) + a + 2 = e^(a – eb) + b(a + e). Giá trị biểu thức ln (2a + 3b) nằm trong khoảng nào sau đây? Xem thêm : Hệ thống bài tập trắc nghiệm vận dụng cao, phân loại hàm số mũ, logarit (phần 1 – 10)
Bài tập VD VDC hàm số luỹ thừa, hàm số mũ và hàm số lôgarit
Tài liệu gồm 86 trang, được tổng hợp bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn 131 câu hỏi và bài tập trắc nghiệm chuyên đề hàm số luỹ thừa, hàm số mũ và hàm số lôgarit, mức độ vận dụng và vận dụng cao (VD – VDC), có đáp án và lời giải chi tiết, được trích dẫn từ các đề thi thử THPT Quốc gia môn Toán năm học 2019 – 2020. Tài liệu phù hợp với đối tượng học sinh có học lực khá – giỏi, ôn thi điểm 8 – 9 – 10 trong đề thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu bài tập VD – VDC hàm số luỹ thừa, hàm số mũ và hàm số lôgarit: + Vấn đề 1. Một số bài toán thực tế – biến đổi mũ – logarit. + Vấn đề 2. Phương trình và bất phương trình mũ – logarit. + Vấn đề 3. Phương trình và bất phương trình mũ – logarit chứa tham số. + Vấn đề 4. Phương trình và bất phương trình mũ – logarit nhiều ẩn. + Vấn đề 5. Giá trị nhỏ nhất và giá trị lớn nhất của biểu thức chứa mũ – logarit.
Hệ thống bài tập trắc nghiệm vận dụng cao, phân loại hàm số mũ, logarit
Tài liệu gồm 21 trang được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tuyển tập hệ thống bài tập trắc nghiệm vận dụng cao, phân loại hàm số mũ, hàm số logarit thuộc chương trình Toán 12 (Giải tích 12), dành cho học sinh khá, giỏi, nhằm ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán. Trích dẫn tài liệu hệ thống bài tập trắc nghiệm vận dụng cao, phân loại hàm số mũ, logarit: + Phương trình 4^(x^2 – 3x + 2) + 4^(x^2 + 6x + 5) = 4^(2x^2 + 3x + 7) + 1 có bốn nghiệm phân biệt a, b, c, d theo thứ tự tăng dần. Tính giá trị biểu thức a + 2b + 3c + 4d. + Giả sử a, b là các số thực sao cho x^3 + y^3 = a.10^3z + b.10^2z đúng với mọi số thực dương x, y, z thỏa mãn điều kiện log(x + y) = z; log(x^2 + y^2) = z + 1. Giá trị của a + b là? [ads] + Cho các số thực dương a, b khác 1. Biết rằng bất kỳ đường thẳng nào song song với trục hoành mà cắt các đường thẳng y = a^x; y = b^x, trục tung lần lượt tại M, N và A thì ta luôn có AN = 2AM (hình vẽ bên). Mệnh đề nào sau đây đúng ? + Cho hàm số y = loga x; y = logb x có đồ thị như hình vẽ bên. Đường thẳng x = 7 cắt trục hoành và các đồ thị hàm số y = loga x; y = logb x lần lượt tại H, M, N. Biết rằng 2HM = HN. Mệnh đề nào sau đây đúng? + Biết tập hợp tất cả các giá trị của tham số m để bất phương trình 4^ sin^2x + 5cos^2x ≤ m.7cos^2x có nghiệm là nửa khoảng [a/b;+vc) với a, b nguyên dương và phân số a/b tối giản. Tính giá trị của S = a + b.