Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 10 năm 2023 - 2024 trường THPT Anh Sơn 3 - Nghệ An

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán 10 năm học 2023 – 2024 trường THPT Anh Sơn 3, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 10 năm 2023 – 2024 trường THPT Anh Sơn 3 – Nghệ An : + Để gây quỹ cho chương trình Tết yêu thương, một trường THPT tổ chức cho các lớp gói bánh chưng và bánh tét. Mỗi lớp được sử dụng tối đa 10kg gạo nếp, 1kg thịt và 1,6kg đậu xanh. Để gói 1 cái bánh chưng cần 0,5kg gạo nếp, 0,05kg thịt và 0,1kg đậu xanh. Để gói 1 cái bánh tét cần 0,75kg gạo nếp, 0,075kg thịt và 0,1kg đậu xanh. Mỗi cái bánh chưng bán được 30 ngàn đồng, mỗi cái bánh tét bán được 40 ngàn đồng. Để thu được số tiền nhiều nhất, mỗi lớp cần gói bao nhiêu cái bánh chưng, bao nhiêu cái bánh tét? + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có điểm 23M là trung điểm của cạnh AB điểm 15H và điểm 59K lần lượt là chân đường cao kẻ từ C và B, điểm D thuộc đường thẳng 210xy sao cho tam giác BCD cân tại C. Tìm tọa độ các điểm C và D biết rằng điểm B có hoành độ âm. + Cho tam giác ABC. Trên các cạnh BC, CA và AB của tam giác đó, lần lượt lấy các điểm A B và C. Gọi aS bS cS và S tương ứng là diện tích của các tam giác ABC BCA CAB và ABC. Chứng minh bất đẳng thức 32abcS. Dấu đẳng thức xảy ra khi và chỉ khi nào?

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG Toán 10 năm 2022 - 2023 lần 1 trường chuyên KHTN - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi môn Toán lớp 10 năm học 2022 – 2023 lần 1 trường THPT chuyên KHTN, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 08 tháng 08 năm 2022. Trích dẫn đề thi HSG Toán 10 năm 2022 – 2023 lần 1 trường chuyên KHTN – Hà Nội : + Tìm tất cả các số nguyên n sao cho 5n – 1, 55n + 11 là hai số chính phương và 55n2 – 149 là số nguyên tố. + Xét 100 số nguyên a1, a2, …, a99, a100 có tính chất sau: a1 = a100 = 0 và với mỗi số nguyên dương 2 < i < 99 ta đều có ai > (ai-1 + ai+1)/2. Tìm giá trị nhỏ nhất có thể có của a23? + Cho hình chữ nhật ABCD nội tiếp đường tròn (O). Điểm P thuộc cung nhỏ CD của (O). M là trung điểm CD. Lấy Q thuộc đường thẳng AD sao cho PQ và PM vuông góc. Trên BQ lấy R sao cho PR vuông góc với CD. a) Chứng minh rằng PB và OM cắt nhau trên đường tròn đường kính QM. b) Chứng minh rằng tứ giác PCRD và tam giác RAB có diện tích bằng nhau. c) Hỏi có tất cả bao nhiêu vị trí của P để RA vuông góc RB? Hãy giải thích.
Đề thi học sinh giỏi Toán 10 năm 2021 - 2022 cụm trường THPT - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp cụm môn Toán 10 năm học 2021 – 2022 cụm trường THPT trực thuộc sở Giáo dục và Đào tạo Hà Nội.
Đề thi chọn học sinh giỏi Toán 10 năm 2021 - 2022 sở GDĐT Hà Nam
Đề thi chọn học sinh giỏi môn Toán 10 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Hà Nam gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề thi chọn học sinh giỏi Toán 10 năm 2021 – 2022 sở GD&ĐT Hà Nam : + Cho parabol 2 P y x m x m 2 2 1 và đường thẳng 2 d y m x m m 1 5 3 (với m là tham số). Biết đường thẳng d cắt đồ thị P tại hai điểm phân biệt A B. Tìm điều kiện của m để AB 26. + Cho phương trình 2 x b x c 2 1 0 với b c. Biết phương trình có hai nghiệm dương 1 2 x x thỏa mãn 1 2 x x 4. a) Chứng minh 2 2 4 2 b b c b) Tìm giá trị lớn nhất của biểu thức 2 P b c b b b 6 3 1 2022. + Cho ABC nội tiếp đường tròn O R và có trọng tâm là G. Các đường thẳng AG BG CG theo thứ tự cắt đường tròn O tại điểm thứ hai là M N P. Biết 1 1 1 2 sin sin sin R.
Đề thi học sinh giỏi tỉnh Toán 10 năm 2021 - 2022 sở GDĐT Hà Tĩnh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 10 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; kỳ thi được diễn ra vào ngày 15 tháng 03 năm 2022. Trích dẫn đề thi học sinh giỏi tỉnh Toán 10 năm 2021 – 2022 sở GD&ĐT Hà Tĩnh: + Trong hệ tọa độ Oxy, cho tam giác ABC vuông tại A, gốc tọa độ O là trung điểm của cạnh BC. Đường phân giác trong góc B có phương trình (d): x + 2y – 5 = 0, đường thẳng AC đi qua điểm I(6;2). Tìm tọa độ các đỉnh của tam giác ABC. + Cho tam giác ABC vuông tại A (BC = a, CA = b, AB = c), đường cao AH, I là điểm thuộc đoạn AH sao cho AI = 2IH. a) Chứng minh rằng a2IA + 2b2IB + 2c2IC = 0. b) Biết góc ACB = 30°, tìm giá trị nhỏ nhất của biểu thức k = 2MA + 3MB + 7MC với M là điểm bất kỳ trong mặt phẳng chứa tam giác. + Cho hàm số f(x) = (x2 + mx + 1)/(x2 + x + 1) (m là tham số). Tìm m để với mọi a, b, c thì f(a), f(b), f(c) là độ dài ba cạnh của một tam giác.