Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2017 - 2018 sở GDĐT Thanh Hóa

Ngày 10 tháng 03 năm 2018, sở Giáo dục và Đào tạo tỉnh Thanh Hóa tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 khối THCS năm học 2017 – 2018, kỳ thi nhằm tuyển chọn những em học sinh lớp 9 có khả năng học tập môn Toán xuất sắc để tuyên dương và khen thưởng, làm mục tiêu phấn đấu cho học sinh tỉnh nhà, các em được chọn sẽ được tiếp tục bồi dưỡng để tham dự kỳ thi HSG Toán 9 cấp Quốc gia. Đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2017 – 2018 sở GD&ĐT Thanh Hóa với 05 bài toán dạng tự luận, thang điểm bài thi là 20 điểm, thời gian làm bài thi 150 phút, đề thi gồm có 01 trang, có hướng dẫn giải và biểu điểm. Trích dẫn đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2017 – 2018 sở GD&ĐT Thanh Hóa : + Cho a, b là các số nguyên dương thỏa mãn p = a^2 + b^2 là số nguyên tố và p – 5 chia hết cho 8. Giả sử x, y là các số nguyên thỏa mãn ax^2 – by^2 chia hết cho p. Chứng minh rằng cả hai số x, y chia hết cho p. + Biết phương trình (m – 2)x^2 – 2(m – 1)x + m = 0 có hai nghiệm tương ứng là độ dài hai cạnh góc vuông của một tam giác vuông. Tìm m để độ dài đường cao ứng với cạnh huyền của tam giác vuông đó bằng 2/√5. + Cho tam giác ABC có (O), (I), (Ia) theo thứ tự là các đường tròn ngoại tiếp, đường tròn nội tiếp và đường tròn bàng tiếp đối diện đỉnh A của tam giác với các tâm tương ứng là O, I, Ia. Gọi D là tiếp điểm của (I) với BC, P là điểm chính giữa cung BAC của (O), PIa cắt (O) tại điểm K. Gọi M là giao điểm của PO và BC, N là điểm đối xứng với P qua O. 1. Chứng minh IBIaC là tứ giác nội tiếp. 2. Chứng minh NIa là tiếp tuyến của đường tròn ngoại tiếp tam giác IaMP. 3. Chứng minh DAI = KAIa.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT Hương Trà - TT Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Hương Trà, tỉnh Thừa Thiên Huế; đề thi gồm 01 trang với 05 bài toán hình thức 100% tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn Đề học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT Hương Trà – TT Huế : + Cho phương trình: x2 – 2mx + m2 – m – 6 = 0 (m là tham số). Với giá trị nào của m thì phương trình có hai nghiệm x1 và x2 sao cho |x1| + |x2| = 8. + Tìm tất cả các cặp số nguyên dương (x;y) thỏa mãn (x + y)3 = (x – y – 6)2. Cho tam giác ABC vuông tại A có phân giác AD. Gọi M, N lần lượt là hình chiếu của B, C lên đường thẳng AD. Chứng minh rằng: 2AD < BM + CN. + Cho nửa đường tròn tâm O đường kính AB. Một điểm C cố định thuộc đoạn thẳng AO (C khác A và C khác O). Đường thẳng đi qua C và vuông góc với AO cắt nửa đường tròn đã cho tại D. Trên cung BD lấy điểm M (M khác B và M khác D). Tiếp tuyến của nửa đường tròn đã cho tại M cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD. a) Chứng minh tam giác EMF là tam giác cân. b) Gọi I là tâm đường tròn ngoại tiếp tam giác FDM. Chứng minh ba điểm D, I, B thẳng hàng. c) Chứng minh góc ABI có số đo không đổi khi M di chuyển trên cung BD.
Đề học sinh giỏi huyện Toán 9 năm 2022 - 2023 phòng GDĐT Quế Võ - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quế Võ, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 11 tháng 01 năm 2023. Trích dẫn Đề học sinh giỏi huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Quế Võ – Bắc Ninh : + Tìm các số tự nhiên x; y sao cho x2 + 3x + 1 = 5y. + Có bao nhiêu cách viết các số tự nhiên từ 1 đến 15 thành một dãy sao cho tổng của hai số liên tiếp bất kỳ trong dãy đều là số chính phương. + Cho hai đường tròn (O) và (O’) thay đổi nhưng luôn cắt nhau tại hai điểm phân biệt A và B cố định. Gọi M là trung điểm của OO’ và T là điểm đối xứng với A qua M. Đường tròn tâm T bán kinh TA tương ứng cắt các đường tròn (O) và (O’) tại các giao điểm thứ hai là E và F. a) Chứng minh rằng AE là tiếp tuyến của đường tròn (O’) b) Chứng minh rằng đường tròn ngoại tiếp tam giác AEF luôn đi qua một điểm cố định khác A, khi hai đường tròn (O) và (O’) thay đổi nhưng luôn đi qua A, B c) Trên đường tròn (O) lấy điểm P bất kỳ sao cho PA cắt (O’) tại Q. Chứng minh rằng TP = TQ.
Đề chọn học sinh giỏi Toán 9 THCS năm 2022 - 2023 sở GDĐT Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 THCS cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; kỳ thi được diễn ra vào ngày 11 tháng 01 năm 2023. Trích dẫn Đề chọn học sinh giỏi Toán 9 THCS năm 2022 – 2023 sở GD&ĐT Vĩnh Phúc : + Cho tam giác ABC có hai đường trung tuyến BM, CN cắt nhau tại điểm G. Gọi K là một điểm trên cạnh BC, đường thẳng (d1) đi qua K và song song với CN cắt AB tại D, đường thẳng (d2) đi qua K và song song với BM cắt AC tại E. Gọi I là giao điểm của hai đường thẳng KG và DE. Chứng minh rằng I là trung điểm của đoạn thẳng DE. + Cho hình thang ABCD có đáy nhỏ là AB và BC = BD. Gọi H là trung điểm của đoạn thẳng CD. Đường thẳng (d) đi qua điểm H cắt các đường thẳng AC, AD lần lượt tại E, F sao cho D nằm giữa A và F. Chứng minh rằng DBF = EBC. + Một cửa hàng bán bưởi Đoan Hùng với giá bán mỗi quả là 50000 đồng. Với giá bán này thì mỗi ngày cửa hàng chỉ bán được 40 quả. Cửa hàng dự định giảm giá bán, ước tính nếu cửa hàng cứ giảm mỗi quả 1000 đồng thì số bưởi bán tăng thêm được là 10 quả mỗi ngày. Xác định giá bán để cửa hàng thu được lợi nhuận cao nhất, biết rằng giá nhập về ban đầu cho mỗi quả bưởi là 30000 đồng.
Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 - 2023 sở GDĐT Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hải Dương; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thời gian làm bài 150 phút, đề thi có đáp án, lời giải chi tiết và thang chấm điểm; kỳ thi được diễn ra vào thứ Tư ngày 11 tháng 01 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Hải Dương : + Giải phương trình nghiệm nguyên x3 – y3 – 2y2 – 3y – 1 = 0. Tìm số nguyên tố p để 2041 – p2 không chia hết cho 24. + Cho đường tròn (O) đường kính AB, qua A và B lần lượt vẽ các tiếp tuyến d1 và d2 với (O). Từ điểm M bất kỳ trên (O) vẽ tiếp tuyến với đường tròn, cắt d1 tại C và cắt d2 tại D. Kẻ MH vuông góc với AB tại H. a) Chứng minh rằng: AD, BC, MH đồng quy tại trung điểm của MH. b) Đường tròn (O) đường kính CD cắt đường tròn (O) tại E và F (E thuộc cung AM). Chứng minh EF đi qua trung điểm của MH. + Cho tam giác ABC đều cạnh a. Điểm M di động trên đoạn BC. Vẽ ME vuông góc với AB tại E. MF vuông góc với AC tại F. Tính giá trị nhỏ nhất của đoạn EF theo a.