Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chinh phục các bài toán cực trị mũ và logarit - Nguyễn Minh Tuấn

Như ta đã biết trong đề thi môn toán của kì thi THPT Quốc Gia 2018 vừa qua có xuất hiện các bài toán cực trị mũ và logarit, đây là dạng toán khá mới lạ và đã gây lúng túng cho nhiều học sinh. Trong bài viết này tác giả Nguyễn Minh Tuấn sẽ cùng các bạn tìm hiểu phương pháp giải, cũng như phát triển bài toán cực trị mũ và logarit lên các mức độ cao hơn. • CÁC KIẾN THỨC CẦN NHỚ : Bất đẳng thức AM – GM, bất đẳng thức Cauchy – Schwarz, bất đẳng thức Minkowski, bất đẳng thức Holder, bất đẳng thức trị tuyệt đối, điều kiện có nghiệm của phương trình bậc 2, tính chất hàm đơn điệu … • CÁC DẠNG TOÁN CỰC TRỊ MŨ – LOGARIT : 1. KỸ THUẬT RÚT THẾ – ĐÁNH GIÁ ĐIỀU KIỆN ĐƯA VỀ HÀM MỘT BIẾN SỐ Đây là một kỹ thuật cơ bản nhất mà khi gặp các bài toán về cực trị mà ta sẽ luôn nghĩ tới, hầu hết chúng sẽ được giải quyết bằng cách thế một biểu thức từ giả thiết xuống yêu cầu từ đó sử dụng các công cụ như đạo hàm, bất đẳng thức để giải quyết. [ads] 2. HÀM ĐẶC TRƯNG Dạng toán này đề bài sẽ cho phương trình hàm đặc trưng từ đó ta sẽ đi tìm mối liên hệ giữa các biến và rút thế vào giả thiết thứ 2 để giải quyết yêu cầu bài toán. Nhìn chung dạng toán này ta chỉ cần nắm chắc được kỹ năng biến đổi làm xuất hiện được hàm đặc trưng kết hợp với kiến thức về đạo hàm là sẽ giải quyết được trọn vẹn. 3. CÁC BÀI TOÁN LIÊN QUAN TỚI ĐỊNH LÝ VI-ET Phương pháp chung của các bài toán ở dạng này hầu hết sẽ là đưa giả thiết phương trình logarit về dạng một tam thức, sau đó sử dụng định lý Vi-et và các phép biến đổi logarit để giải quyết bài toán. 4. CÁC BÀI TOÁN LIÊN QUAN TỚI BIỂU THỨC LOG_B A Vấn đề được đề cập tới ở đây thực chất chỉ là những bài toán biến đổi giả thiết theo ẩn log_b a và đưa về khảo sát hàm số một biến đơn giản. 5. SỬ DỤNG PHƯƠNG PHÁP ĐÁNH GIÁ BẤT ĐẲNG THỨC Đây chính là nội dung chính của chuyên đề mà tác giả Nguyễn Minh Tuấn muốn nhắc tới, một dạng toán lấy ý tưởng từ đề thi THPT Quốc Gia 2018. 6. CÁC BÀI TOÁN CÓ THAM SỐ 7. CÁC BÀI TOÁN VỀ DÃY SỐ

Nguồn: toanmath.com

Đọc Sách

Bài toán lãi suất và tăng trưởng
Tài liệu gồm 23 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán lãi suất và tăng trưởng, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 2. I. KIẾN THỨC TRỌNG TÂM II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI + Bài toán 1. Công thức lãi kép. + Bài toán 2. Công thức tăng trưởng dân số. + Bài toán 3. Hao mòn tài sản, diện tích rừng bị giảm. + Bài toán 4. Tăng trưởng của bèo, của vi khuẩn. + Bài toán 5. Tiền gửi tiết kiệm. + Bài toán 6. Trả góp hàng tháng. + Bài toán 7. Một số dạng toán khác. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Phương trình và bất phương trình mũ - logarit chứa tham số
Tài liệu gồm 34 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề phương trình và bất phương trình mũ – logarit chứa tham số, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 2. 1. Bài toán 1. Tìm tham số m để f(x;m) = 0 có nghiệm (hoặc có k nghiệm) trên miền D. 2. Bài toán 2. Tìm tham số m để f(x;m) ≥ 0 hoặc f(x;m) ≤ 0 có nghiệm trên D. 3. Một số phương pháp áp dụng trong bài toán. a. Phương pháp đặt ẩn phụ. b. Phương pháp hàm số. c. Dấu của tam thức bậc hai. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Toàn tập phương trình, bất phương trình, hệ phương trình mũ - logarit vận dụng cao
Tài liệu gồm 106 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tổng hợp toàn tập phương trình, bất phương trình, hệ phương trình mũ – logarit vận dụng cao (phiên bản năm 2021) nằm trong hệ thống bài tập trắc nghiệm chuyên đề lũy thừa, mũ và logarit lớp 12 THPT. Vận dụng cao, phân loại phương trình, bất phương trình, hệ mũ – logarit: + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p1. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p2. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p3. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p4. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p5. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p6. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p7. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p8. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p9. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p10. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p11. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p12. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p13. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p14. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p15. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p16. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p17. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p18. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p19. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p20. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p21. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p22. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p23. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p24. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p25. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p26. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p27. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p28. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p29. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p30. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p31. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p32. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p33. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p34. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p35. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p36. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p37. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p38. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p39. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p40. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p41. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p42. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p43. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p44. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p45. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p46. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p47. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p48. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p49. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p50. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p51. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p52. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p53. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p54. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p55.
Toàn tập cực trị mũ, logarit vận dụng cao
Tài liệu gồm 38 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tổng hợp toàn tập cực trị mũ, logarit vận dụng cao (phiên bản năm 2021) nằm trong hệ thống bài tập trắc nghiệm chuyên đề lũy thừa, mũ và logarit lớp 12 THPT. Vận dụng cao cực trị siêu việt (mũ, logarit). + Cực trị siêu việt p1. + Cực trị siêu việt p2. + Cực trị siêu việt p3. + Cực trị siêu việt p4. + Cực trị siêu việt p5. + Cực trị siêu việt p6. + Cực trị siêu việt p7. + Cực trị siêu việt p8. + Cực trị siêu việt p9. + Cực trị siêu việt p10. + Cực trị siêu việt p11. + Cực trị siêu việt p12. + Cực trị siêu việt p13. + Cực trị siêu việt p14. + Cực trị siêu việt p15. + Cực trị siêu việt p16. + Cực trị siêu việt p17. + Cực trị siêu việt p18. + Cực trị siêu việt p19.