Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng và bài tập trắc nghiệm lũy thừa, mũ và logarit có đáp án - Nguyễn Bảo Vương

Tài liệu được biên soạn bởi thầy Nguyễn Bảo Vương phân dạng và tuyển tập các bài tập trắc nghiệm lũy thừa, mũ và logarit có đáp án, các bài toán được sắp xếp theo từng nội dung trong SGK Giải tích 12 chương 2. BÀI 1 . LŨY THỪA Dạng 1. Thực hiện phép tính, rút gọi biểu thức, lũy thừa. Dạng 2. So sánh các lũy thừa. BÀI 2 . HÀM SỐ LŨY THỪA Dạng 1. Tập xác định của hàm số lũy thừa. Dạng 2. Tính chất hàm số lũy thừa. BÀI 3 . LOGARIT Bảng tóm tắt công thức Mũ-loarrit thường gặp. Dạng 1. Tính giá trị biểu thức chứa logarit. Dạng 2. Các mệnh đề liên quan đến logarit. Dạng 3. Biểu diễn logarit này theo logarit khác. BÀI 4 . HÀM SỐ MŨ – HÀM SỐ LŨY THỪA Dạng 1. Tìm tập xác định của hàm số mũ – hàm số lũy thừa. Dạng 2. Tính đạo hàm các cấp hàm số mũ, hàm số logarit. Dạng 3. Tìm giá trị lớn nhất – giá trị nhỏ nhất của hàm số mũ – logarit. Dạng 4. Tìm giá trị lớn nhất – giá trị nhỏ nhất của hàm số mũ – logarit hàm nhiều biến. Dạng 5. Sự biến thiên của hàm số mũ – logarit. Dạng 6. Toán cực trị liên quan đến hàm số mũ – logarit. Dạng 7. Đọc đồ thị hàm số mũ – logarit. Dạng 8. Bài toán lãi suất. [ads] BÀI 5 . PHƯƠNG TRÌNH MŨ Dạng 1. Phương trình mũ không chứa tham số. + Bài toán tìm nghiệm phương trình mũ không có điều kiện nghiệm. + Bài toán tính điều kiện của các nghiệm phương trình mũ. + Bài toán biến đổi phương trình mũ. Dạng 2.Phương trình mũ chứa tham số. + Bài toán tìm m để phương trình mũ có nghiệm. + Bài toán tìm m để phương trình mũ có số nghiệm bằng k. + Bài toán tìm m để phương trình mũ có nghiệm thỏa mãn điều kiện cho trước. + Bài toán tìm m để phương trình mũ có nghiệm thuộc khoảng, đoạn cho trước. BÀI 6 . BẤT PHƯƠNG TRÌNH MŨ Dạng 1. Bất phương trình không chứa tham số. + Bài toán bất phương trình cơ bản. + Bài toán bất phương trình mũ có điều kiện nghiệm. Dạng 2. Bất phương trình mũ chứa tham số. + Bài toán tìm m để bất phương trình có vô số nghiệm. + Bài toán tìm m để bất trình có nghiệm thuộc khoảng, đoạn, nữa khoảng cho trước. BÀI 7 . PHƯƠNG TRÌNH LOGARIT Dạng 1. Phương trình logarit không chứa tham số. + Bài toán tìm nghiệm của phương trình logarit (không có điều kiện nghiệm). + Bài toán tìm nghiệm của phương trình logarit có điều kiện nghiệm. Dạng 2. Phương trình logarit chứa tham số. + Bài toán tìm m để phương trình logarit có nghiệm. + Bài toán tìm m để phương trình logarit có nghiệm thỏa mãn điều kiện cho trước. + Bài toán tìm m để phương trình logarit có nghiệm thuộc khoảng cho trước. BÀI 8 . BẤT PHƯƠNG TRÌNH LOGARIT Dạng 1. Bất phương trình không chứa tham số. + Bài toán bất phương trình cơ bản (không có điều kiện nghiệm). + Bài toán bất phương trình logarit có điều kiện của nghiệm. Dạng 2. Bất phương trình logarit chứa tham số. + Bài toán tìm m để bất phương trình có nghiệm. Xem thêm : Giải chi tiết các dạng toán lũy thừa, mũ và logarit – Nguyễn Bảo Vương

Nguồn: toanmath.com

Đọc Sách

Các dạng bài tập VDC mặt cầu, mặt trụ, mặt nón
Tài liệu gồm 61 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) mặt cầu, mặt trụ, mặt nón, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Hình học 12 chương 2 và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC mặt cầu, mặt trụ, mặt nón: CHỦ ĐỀ 1 . MẶT NÓN, HÌNH NÓN VÀ KHỐI NÓN. Dạng 1: Tính diện tích xung quanh, diện tích toàn phần, độ dài đường sinh, chiều cao, bán kính đáy, thiết diện của hình nón. Dạng 2: Tính thể tích khối nón, bài toán cực trị. Dạng 3: Bài toán thực tế về hình nón, khối nón. CHỦ ĐỀ 2 . MẶT TRỤ, HÌNH TRỤ VÀ KHỐI TRỤ. Dạng 1: Tính diện tích xung quanh, diện tích toàn phần, diện tích thiết diện, chiều cao, bán kính đáy, diện tích đáy của hình trụ. Dạng 2: Thể tích khối trụ, bài toán cực trị. Dạng 3: Bài toán thực tế về khối trụ. CHỦ ĐỀ 3 . MẶT CẦU, KHỐI CẦU. Dạng 1. Mặt cầu ngoại tiếp hình đa diện. Dạng 2. Mặt cầu nội tiếp khối đa diện. Dạng 3. Bài toán cực trị. Dạng 4. Bài toán thực tế. Dạng 5. Dạng toán tổng hợp.
Các dạng bài tập VDC mặt cầu, khối cầu
Tài liệu gồm 20 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) mặt cầu, khối cầu, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Hình học 12 chương 2 (mặt cầu, mặt trụ, mặt nón) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC mặt cầu, khối cầu: A. LÍ THUYẾT TRỌNG TÂM Định nghĩa. Vị trí tương đối giữa mặt cầu và một điểm. Vị trí tương đối giữa mặt cầu và đường thẳng. Vị trí tương đối giữa mặt cầu và mặt phẳng. Công thức cần nhớ. B. CÁC DẠNG BÀI TẬP Dạng 1. Mặt cầu ngoại tiếp hình đa diện. + Cách 1. Tìm một điểm cách đều các đỉnh của khối đa diện theo định nghĩa mặt cầu. + Cách 2. Tâm mặt cầu ngoại tiếp khối đa diện là giao điểm của trục đường tròn ngoại tiếp đa giác đáy và mặt phẳng trung trực của một cạnh bên. + Cách 3. Dựa vào trục của đường tròn ngoại tiếp đa giác đáy và trục của đường tròn ngoại tiếp một mặt bên. Dạng 2. Mặt cầu nội tiếp khối đa diện. Dạng 3. Bài toán cực trị. Dạng 4. Bài toán thực tế. Dạng 5. Dạng toán tổng hợp.
Các dạng bài tập VDC mặt trụ, hình trụ và khối trụ
Tài liệu gồm 16 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) mặt trụ, hình trụ và khối trụ, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Hình học 12 chương 2 (mặt cầu, mặt trụ, mặt nón) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC mặt trụ, hình trụ và khối trụ: A. LÝ THUYẾT TRỌNG TÂM Mặt trụ tròn xoay. Hình trụ tròn xoay. Khối trụ tròn xoay. Công thức cần nhớ. B. CÁC DẠNG BÀI TẬP Dạng 1: Tính diện tích xung quanh, diện tích toàn phần, diện tích thiết diện, chiều cao, bán kính đáy, diện tích đáy của hình trụ. Dạng 2: Thể tích khối trụ, bài toán cực trị. Dạng 3: Bài toán thực tế về khối trụ.
Các dạng bài tập VDC mặt nón, hình nón và khối nón
Tài liệu gồm 25 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) mặt nón, hình nón và khối nón, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Hình học 12 chương 2 (mặt cầu, mặt trụ, mặt nón) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC mặt nón, hình nón và khối nón: A. LÍ THUYẾT TRỌNG TÂM Mặt nón tròn xoay. Hình nón tròn xoay. Khối nón tròn xoay. Công thức cần nhớ. Sơ đồ hệ thống hóa. B. CÁC DẠNG BÀI TẬP Dạng 1: Tính diện tích xung quanh, diện tích toàn phần, độ dài đường sinh, chiều cao, bán kính đáy, thiết diện của hình nón. Dạng 2: Tính thể tích khối nón, bài toán cực trị. Dạng 3: Bài toán thực tế về hình nón, khối nón.