Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Ứng dụng phương pháp hàm số giải phương trình mũ và logarit

Tài liệu gồm 35 trang được biên soạn bởi tập thể quý thầy, cô giáo nhóm Nhóm Word Và Biên Soạn Tài Liệu Môn Toán THPT, hướng dẫn ứng dụng phương pháp hàm số giải phương trình mũ và logarit, được phát triển dựa trên câu 47 đề thi minh họa THPT Quốc gia môn Toán năm học 2019 – 2020 do Bộ Giáo dục và Đào tạo công bố. Giới thiệu sơ lược về tài liệu ứng dụng phương pháp hàm số giải phương trình mũ và logarit: A. KIẾN THỨC CẦN NHỚ B. BÀI TẬP MẪU 1. Đề bài : Có bao nhiêu cặp số nguyên $(x;y)$ thỏa mãn $0 \le x \le 2020$ và ${\log _3}(3x + 3) + x = 2y + {9^y}$? 2. Phân tích hướng dẫn giải a. Dạng toán: Ứng dụng tính đơn điệu của hàm số để giải phương trình mũ, logarit. b. Phương pháp: Tìm hàm đặc trưng của bài toán, đưa phương trình về dạng $f(u) = f(v).$ c. Hướng giải: Bước 1: Đưa phương trình đã cho về dạng $f(u) = f(v).$ Bước 2: + Xét hàm số $y = f(t)$ trên miền $D.$ + Tính $y’$ và xét dấu $y’.$ + Kết luận tính đơn điệu của hàm số $y = f(t)$ trên $D.$ Bước 3: Tìm mối liên hệ giữa $x$ và $y$ rồi tìm các cặp số $(x;y)$ rồi kết luận. C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN

Nguồn: toanmath.com

Đọc Sách

Hàm số lũy thừa - mũ và logarit -Trần Sĩ Tùng
Hàm số lũy thừa – mũ và logarit -Trần Sĩ Tùng
Một số bài toán phương trình logarit khác cơ số - Huỳnh Đức Khánh - Đại học Quy Nhơn
Phương trình logarit với cơ số khác nhau luôn là vấn đề gây khó dễ cho học sinh khi gặp phải trong các đề thi. Học sinh thường lúng túng khi biến đổi, gặp khó khăn để đưa về cùng cơ số hoặc đưa về các phương trình cơ bản. Tôi viết tài liệu xin đóng góp vài bài mẫu về vấn đề này, bao gồm các phương pháp: + Đổi cơ số + Đặt ẩn phụ để đưa về phương trình mũ + Biến đổi tương đương + Đánh giá hai vế
Một số phương pháp giải phương trình mũ và logarit - THPT chuyên Quảng Bình
Một số phương pháp giải phương trình mũ và logarit – THPT chuyên Quảng Bình
Chuyên đề phương trình mũ và logarit - Lưu Huy Thưởng
Chuyên đề phương trình mũ và logarit – Lưu Huy Thưởng