Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

50 chuyên đề phát triển bám sát đề tham khảo TN THPT 2024 môn Toán

Tài liệu gồm 438 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, tuyển tập 50 chuyên đề phát triển bám sát đề tham khảo tốt nghiệp THPT năm 2024 môn Toán. MỤC LỤC : Dạng 1: Tìm giá trị cực đại, cực tiểu của hàm số thông qua bảng biến thiên. Dạng 2: Tìm nguyên hàm của hàm số cơ bản. Dạng 3: Tìm tập nghiệm của phương trình logarit cơ bản. Dạng 4: Tìm tọa độ vectơ đơn giản khi biết tọa độ điểm. Dạng 5: Tìm tiệm cận ngang của đồ thị hàm số hữu tỷ b1/b1. Dạng 6: Tìm hàm số khi biết bảng biến thiên. Dạng 8: Tìm vectơ chỉ phương của đường thẳng. Dạng 9: Tìm số phức khi biết điểm biểu diễn trên mp tọa độ. Dạng 10: Tìm phương trình mặt cầu khi biết tọa độ tâm và bán kính cụ thể. Dạng 11: Thu gọn biểu thức logarit cho trước. Dạng 12: Tìm khoảng đồng biến, nghịch biến của hàm số khi biết đồ thị hàm số. Dạng 13: Tìm thể tích khối lăng trụ khi biết diện tích đáy và chiều cao. Dạng 14: Tìm tập nghiệm của BPT mũ cơ bản. Dạng 15: Xét sự biến thiên của hàm số mũ và logarit. Dạng 16: Tìm tọa độ vectơ pháp tuyến của mặt phẳng cơ bản cho trước. Dạng 17: Tìm điểm cực trị của hàm số khi biết đạo hàm y’. Dạng 18: Tính tích phân của hàm số cơ bản sử dụng tính chất. Dạng 19: Tính tích phân cơ bản sử dụng định nghĩa và tính chất. Dạng 20: Tính thể tích khối chóp khi biết diện tích đáy và chiều cao. Dạng 21: Tìm tổng hai số phức. Dạng 22: Xác định các yếu tố liên qua đến hình nón. Dạng 23: Bài toán sử dụng hoán vị, chỉnh hợp, tổ hợp cơ bản. Dạng 24: Tìm nguyên hàm của hàm số mũ cơ bản. Dạng 25: Bài toán tương giao của hai đồ thị. Dạng 26: Tìm các yếu tố liên quan đến hình trụ. Dạng 27: Tìm các yếu tố liên quan đến cấp số cộng. Dạng 28: Tìm phần thực, phần ảo của số phức đơn giản. Dạng 29: Tìm phần thực, phần ảo của số phức có liên quan đến số phức cho trước. Dạng 30: Tìm góc của hai đường thẳng (hình học không gian 11). Dạng 31: Tìm khoảng cách điểm A đến mặt phẳng (hình học không gian 11). Dạng 32: Tìm khoảng đồng biến, nghịch biến khi biết đạo hàm y’. Dạng 33: Tìm xác suất dùng định nghĩa. Dạng 34: Tính tích phân sử dụng tính chất và định nghĩa. Dạng 35: Tính GTLN – GTNN của hàm số. Dạng 36: Biến đổi biểu thức logarit. Dạng 37: Tìm phương trình mặt cầu có tâm và đi qua một điểm cho trước. Dạng 38: Viết PTĐT đi qua một điểm và song song với một đường thẳng cho trước. Dạng 39: Tính giá trị của biểu thức logarit thỏa ĐK cho trước. Dạng 40: Tìm số giá trị tham số m nguyên để hàm số đơn điệu trên khoảng cho trước. Dạng 41: Tính tích phân của hàm số khi biết diện tích hình phẳng tạo bởi các đồ thị hàm số. Dạng 42: Tìm modun của tổng hai số phức thỏa các điều kiện cho trước. Dạng 43: Tính thể tích lăng trụ biết yếu tố về góc cho trước. Dạng 44: Tìm phương trình mặt phẳng thỏa mãn các điều kiện cho trước. Dạng 45: Tính thể tích khối trụ – ứng dụng thực tế. Dạng 46: Tìm GTLN – GTNN của hàm số logarit. Dạng 47: Tìm GTLN – GTNN của modun tổng, hiệu các số phức thỏa ĐK cho trước. Dạng 48: Tính thể tích của vật thể (ứng dụng tích phân vào thực tế). Dạng 49: Tìm giá trị nguyên của tham số m liên qua đến đạo hàm và hàm số hợp. Dạng 50: Bài toán liên quan đến ứng dụng để tìm cực trị hình học trong KG Oxyz.

Nguồn: toanmath.com

Đọc Sách

Giải bộ đề trắc nghiệm kỳ thi THPT môn Toán - Lê Hồng Đức
Sách Giải bộ đề trắc nghiệm kỳ thi THPT môn Toán gồm 252 trang do các tác giả: Lê Hồng Đức (Chủ biên), Đỗ Hoàng Hà, Lê Hoàng Nam, Đoàn Minh Châu, Đào Thị Ngọc Hà biên soạn. Sách phân tích, hướng dẫn giải 10 đề thi thử THPT Quốc gia môn Toán một cách chi tiết, có vận dụng máy tính Casio để giải nhanh. [ads]
Bài tập củng cố phần 8 9 10 điểm trong đề thi THPT Quốc gia 2017 môn Toán - Lục Trí Tuyên
Tài liệu gồm 54 trang tuyển tập các bài toán trắc nghiệm ở mức độ vận dụng và vận dụng cao giúp củng cố phần 8 – 9 – 10 điểm trong đề thi THPT Quốc gia 2017 môn Toán. Các bài tập đều có đáp án (được gạch chân).
7 chủ đề chính môn Toán trong đề thi THPT Quốc gia 2017 - Lê Đôn Cường
Tài liệu gồm 26 trang tuyển tập các bài toán trắc nghiệm chọn lọc thuộc 7 chủ đề trong đề thi THPT Quốc gia môn Toán, bao gồm: + Chủ đề 1: Hàm số và các bài toán liên quan + Chủ đề 2: Lũy thừa – mũ & logarit + Chủ đề 3: Nguyên hàm – tích phân & ứng dụng + Chủ đề 4: Số phức + Chủ đề 5: Hình học không gian phần khối đa diện + Chủ đề 6: Hình học không gian khối tròn xoay + Chủ đề 7: Hình học không gian tọa độ Oxyz Các bài toán đều có đáp án.
Tuyển tập và giải chi tiết các bài toán thực tiễn trong đề thi thử - Trần Văn Tài
Tài liệu gồm 174 trang tuyển tập các bài toán ứng dụng thực tiễn chọn lọc trong các đề thi thử THPT Quốc gia năm 2017, có lời giải chi tiết. Các bài toán được phân dạng thành các chủ đề: + Chủ đề 1. Liên quan di chuyển – quãng đường đi + Chủ đề 2. Liên quan cắt – ghép các khối hình + Chủ đề 3. Lãi suất ngân hàng – trả góp + Chủ đề 4. Bài toán tăng trưởng + Chủ đề 5. Bài toán tối ưu chi phí sản xuất + Chủ đề 6. Bài toán thực tế min – max [ads] Trích dẫn tài liệu : + Một kho hàng được đặt tại ví trí A trên bến cảng cần được chuyển tới kho C trên một đảo, biết rằng khoảng cách ngắn nhất từ kho C đến bờ biển AB bằng độ dài CB = 60 km và khoảng cách giữa 2 điểm A, B là AB = 130km. Chi phí để vận chuyển toàn bộ kho hàng bằng đường bộ là 300.000 đồng/km, trong khi đó chi phí vận chuyển hàng bằng đường thủy là 500.000 đồng/km. Hỏi phải chọn điểm trung chuyển hàng D (giữa đường bộ và đường thủy) cách kho A một khoảng bằng bao nhiêu thì tổng chi phí vận chuyển hàng từ kho A đến kho C là ít nhất? + Một vùng đất hình chữ nhật ABCD có AB = 25km, BC = 20 km và M, N lần lượt là trung điểm của AD, BC. Một người cưỡi ngựa xuất phát từ A đi đến C bằng cách đi thẳng từ A đến một điểm X thuộc đoạn MN rồi lại đi thẳng từ X đến C. Vận tốc của ngựa khi đi trên phần ABNM là 15km/h, vận tốc của ngựa khi đi trên phần MNCD là 30km/h. Thời gian ít nhất để ngựa di chuyển từ A đến C là mấy giờ? + Trong Công viên Toán học có những mảnh đất mang hình dáng khác nhau. Mỗi mảnh được trồng một loài hoa và nó được tạo thành bởi một trong những đường cong đẹp trong toán học. Ở đó có một mảnh đất mang tên Bernoulli, nó được tạo thành từ đường Lemmiscate có phương trình trong hệ tọa độ Oxy là 16y^2 = x^2.(25 – x^2) như hình vẽ bên. Tính diện tích S của mảnh đất Bernoulli biết rằng mỗi đơn vị trong hệ tọa độ Oxy tương ứng với chiều dài 1 mét.