Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Ứng dụng của nguyên lý Dirichlet trong giải toán THCS

Tài liệu gồm 94 trang trình bày những ứng dụng của nguyên lý Dirichlet trong việc giải các bài toán về số học, tổ hợp, chứng minh bất đẳng thức … giúp bồi dưỡng học sinh giỏi môn Toán cấp THCS. Khái quát nội dung tài liệu ứng dụng của nguyên lý Dirichlet trong giải toán THCS: CHỦ ĐỀ 1 : CÁC BÀI TOÁN ỨNG DỤNG NGUYÊN LÝ DIRICHLET TRONG CÁC BÀI TOÁN TỔ HỢP, SỐ HỌC VÀ HÌNH HỌC. Lý thuyết : Nguyên lí Dirichlet, Nguyên lý Dirichlet cơ bản, Nguyên lý Dirichlet tổng quát, Nguyên lí Dirichlet mở rộng, Nguyên lí Dirichlet dạng tập hợp. Áp dụng : + Nguyên lí Dirichlet là một công cụ hiệu quả dùng để chứng minh nhiều kết quả sâu sắc của toán học. + Nguyên lí Dirichlet cũng được áp dụng cho các bài toán của hình học. + Để sử dụng nguyên lý Dirichlet ta phải làm xuất hiện tình huống nhốt “thỏ” vào “chuồng” và thoả mãn các điều kiện: Số “thỏ” phải nhiều hơn số chuồng, “thỏ” phải được nhốt hết vào các “chuồng”, nhưng không bắt buộc chuồng nào cũng phải có thỏ. + Thường thì phương pháp Dirichlet được áp dụng kèm theo phương pháp phản chứng. Ngoài ra nó còn có thể áp dụng với các nguyên lý khác. [ads] CHỦ ĐỀ 2 : ỨNG DỤNG NGUYÊN LÍ DIRICHLET TRONG CHỨNG MINH BẤT ĐẲNG THỨC. + Việc ứng dụng nguyên lí Dirichlet giúp chúng ta chứng minh được một số bài toán bất đẳng thức một cách rất gọn gàng và độc đáo. + Từ nguyên lí Dirichlet có một mệnh đề có ý nghĩa hết sức quan trọng: Trong 3 số thực bất kì a, b, c bao giờ cũng tìm được hai số cùng dấu. Đây là một mệnh đề rất quan trọng, bởi khi ta đã chọn được “điểm rơi” (tức là đẳng thức của bài toán) thì ta có thể áp dụng mệnh đề trên để chứng minh bất đẳng thức.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề quỹ tích ôn thi vào lớp 10
Tài liệu gồm 52 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề quỹ tích, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. PHƯƠNG PHÁP CHUNG ĐỂ GIẢI BÀI TOÁN QUỸ TÍCH I. Định nghĩa: Một hình H được gọi là tập hợp điểm (quỹ tích) của những điểm M thỏa mãn tính chất A khi và chỉ khi nó chứa và chỉ chứa những điểm có tính chất A. II. Phương pháp giải toán: Để tìm một tập hợp điểm M thỏa mãn tính chất A ta thường làm theo các bước sau: Bước 1: Tìm cách giải: + Xác định các yếu tố cố định, không đổi, các tính chất hình học có liên quan đến bài toán. + Xác định các điều kiện của điểm M. + Dự đoán tập hợp điểm. Bước 2: Trình bày lời giải: A. Phần thuận: Chứng minh điểm M thuộc hình H. B. Giới hạn: Căn cứ vào các vị trí đặc biệt của điểm M để chứng minh điểm M chỉ thuộc một phần B của hình H (nếu có). C. Phần đảo: Lấy điểm M bất kỳ thuộc B. Ta chứng minh điểm M thoả mãn các tính chất A. D. Kết luận: Tập hợp các điểm M là hình B (nêu rõ hình dạng và cách dựng hình B). III. Một số dạng quỹ tích cơ bản trong chương trình THCS: 1. TẬP HỢP ĐIỂM LÀ ĐƯỜNG TRUNG TRỰC: Tập hợp các điểm M cách đều hai điểm A B cho trước là đường trung trực của đoạn thẳng AB. 2. TẬP HỢP ĐIỂM LÀ TIA PHÂN GIÁC: Tập hợp các điểm M nằm trong góc xOy khác góc bẹt và cách đều hai cạnh của góc xOy là tia phân giác của góc xOy. 3. TẬP HỢP ĐIỂM LÀ ĐƯỜNG THẲNG, ĐƯỜNG THẲNG SONG SONG: Ta thường gặp các dạng tập hợp cơ bản như sau: 1. Tập hợp các điểm M nằm trên đường thẳng đi qua các điểm cố định A B là đường thẳng AB. 2. Tập hợp các điểm M nằm trên đường thẳng đi qua điểm cố định A tạo với đường thẳng d một góc không đổi. 3. Tập hợp các điểm M cách đường thẳng d cho trước một đoạn không đổi h là các đường thẳng song song với d và cách đường thẳng d một khoảng bằng h. 4. TẬP HỢP ĐIỂM LÀ ĐƯỜNG TRÒN, CUNG CHỨA GÓC: 1. Nếu A B cố định. Thì tập hợp các điểm M sao cho 0 AMB 90 là đường tròn đường kính AB (không lấy các điểm A B). 2. Nếu điểm O cố định thì tập hợp các điểm M cách O một khoảng không đổi R là đường tròn tâm O bán kính R. 3. Tập hợp các điểm M tạo thành với 2 đầu mút của đoạn thẳng AB cho trước một góc MAB không đổi 0 0 180 là hai cung tròn đối xứng nhau qua AB. Gọi tắt là “cung chứa góc”. MỘT SỐ BÀI TẬP TỔNG HỢP
Chuyên đề những định lý hình học nổi tiếng ôn thi vào lớp 10
Tài liệu gồm 39 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề những định lý hình học nổi tiếng, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. 1. Đường thẳng Euler. 2. Đường thẳng Simmon. 3. Đường thẳng Steiner. 4. Đường tròn Euler. 5. Điểm Miquel. 6. Đường tròn Miquel. 7. Định lý Miquel. 8. Định lý Lyness. 9. Định lý Lyness mở rộng (bổ đề Sawayama). 10. Một hệ quả của định lý Lyness mở rộng. 11. Định lý Ptolemy cho tứ giác nội tiếp. 12. Định lý Ptolemy cho tứ giác bất kỳ. 13. Định lý Brocard. 14. Định lý con bướm với đường tròn. 15. Định lý con bướm mở rộng với đường tròn. 16. Định lý con bướm với cặp đường thẳng. 17. Định lý Shooten. 18. Hệ thức Van Aubel. 19. Định lý Ce’va. 20. Định lý Menelaus.
Chuyên đề tiếp tuyến, cát tuyến ôn thi vào lớp 10
Tài liệu gồm 11 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề tiếp tuyến, cát tuyến, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. NHỮNG TÍNH CHẤT CẦN NHỚ 1. Nếu hai đường thẳng chứa các dây AB CD KCD của một đường tròn cắt nhau tại M thì MA.MB = MC.MD. 2. Đảo lại nếu hai đường thẳng AB CD cắt nhau tại M và MA.MB = MC.MD thì bốn điểm A B C D thuộc một đường tròn. 3. Nếu MC là tiếp tuyến và MAB là cát tuyến thì MC MA MB MO R 2 2 2. 4. Từ điểm K nằm ngoài đường tròn ta kẻ các tiếp tuyến KA KB cát tuyến KCD H là trung điểm CD thì năm điểm K A H O B nằm trên một đường tròn. 5. Từ điểm K nằm ngoài đường tròn ta kẻ các tiếp tuyến KA KB cát tuyến KCD thì AC BC AD BD. Ta có: AC KC KAC ADK KAC KAD AD KA. Tương tự ta cũng có: BC KC BD KB mà KA KB nên suy ra AC BC AD BD. Chú ý: Những tứ giác quen thuộc ACBD như trên thì ta luôn có: AC BC AD BD và CA DA CB DB. NHỮNG BÀI TOÁN TIÊU BIỂU
Chuyên đề tứ giác nội tiếp ôn thi vào lớp 10
Tài liệu gồm 18 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề tứ giác nội tiếp, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. MỘT SỐ TIÊU CHUẨN NHẬN BIẾT TỨ GIÁC NỘI TIẾP Tiêu chuẩn 1. Điều kiện cần và đủ để bốn đỉnh của một tứ giác lồi nằm trên cùng một đường tròn là tổng số đo của hai góc tứ giác tại hai đỉnh đối diện bằng 0 180. Điều kiện để tứ giác lồi ABCD nội tiếp là: 0 A C 180 hoặc 0 B D 180. Hệ quả: Tứ giác ABCD nội tiếp được BAD DCx. Tiêu chuẩn 2. Tứ giác ABCD nội tiếp ADB ACB. Tiêu chuẩn 3. Cho hai đường thẳng 1 2 cắt nhau tại điểm M. Trên hai đường thẳng 1 2 lần lượt lấy các điểm A B và C D khi đó 4 điểm A B C D cùng thuộc một đường tròn khi và chỉ khi MA.MB = MC.MD. VÍ DỤ MINH HỌA BÀI TẬP RÈN LUYỆN