Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK2 Toán 10 năm 2020 - 2021 trường THPT Lạc Long Quân - Bến Tre

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi HK2 Toán 10 năm 2020 – 2021 trường THPT Lạc Long Quân – Bến Tre, đề thi gồm 16 câu trắc nghiệm (04 điểm) và 04 câu tự luận (06 điểm), thời gian làm bài 90 phút, đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận. Trích dẫn đề thi HK2 Toán 10 năm 2020 – 2021 trường THPT Lạc Long Quân – Bến Tre : + Trong mặt phẳng Oxy cho tam giác ABC có điểm A(1;1) đường cao từ B và C nằm trên các đường thẳng 1 d x y 2 8 0 và 2 d x y 2 3 6 0. Hãy viết phương trình tổng quát của đường cao hạ từ đỉnh A của tam giác ABC. + Trong mặt phẳng Oxy cho tam giác ABC có A B C. a) Viết phương trình của đường thẳng chứa cạnh BC. b) Viết phương trình đường tròn ngoại tiếp tam giác ABC. + Lập phương trình đường thẳng song song với đường thẳng d x y 3 2 12 0 và cắt các trục tọa độ Ox, Oy lần lượt tại A và B sao cho AB 13.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Bách Việt - TP HCM
Nhằm giúp các em học sinh lớp 10 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 10 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Bách Việt, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Bách Việt – TP HCM : + Trong mặt phẳng Oxy cho tam giác ABC có A(8;7), B(-5;3), C(5;-4). a) Viết phương trình tham số và tổng quát của đường thẳng BC. b) Viết phương trình tổng quát đường thẳng đi qua A và vuông góc với BC. c) Viết phương trình đường tròn đường kính AB. d) Tính khoảng cách từ B đến đường thẳng. + Cho đường thẳng và đường tròn. Tìm m để đường thẳng tiếp xúc với đường tròn (C)? + Chứng minh biểu thức sau không phụ thuộc vào biến.
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Bà Điểm - TP HCM
Nhằm giúp các em học sinh lớp 10 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 10 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Bà Điểm, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Bà Điểm – TP HCM : + Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A(3;2) và đường thẳng (d). a) Viết phương trình tổng quát của đường thẳng (d’) đi qua A và vuông góc với đường thẳng (d). b) Tìm điểm M thuộc (d) và cách A một khoảng bằng 2. + Trong mặt phẳng với hệ tọa độ Oxy, cho ABC có A(-2;0); B(-1;1); C(2;2). a) Viết phương trình đường tròn (C) ngoại tiếp ABC. b) Viết phương trình tiếp tuyến (d) của (C) tại B. + Cho phương trình (m là tham số). Tìm tất cả các giá trị của tham số m để phương trình có 2 nghiệm x1, x2 thỏa.
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT An Nghĩa - TP HCM
Nhằm giúp các em học sinh lớp 10 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 10 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT An Nghĩa, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT An Nghĩa – TP HCM : + Trong mặt phẳng Oxy, cho hai điểm M và N. Viết phương trình đường tròn C có đường kính MN. + Trong mặt phẳng Oxy, cho điểm I(1;2) và đường thẳng d. Viết phương trình đường tròn (C) có tâm I và tiếp xúc với đường thẳng d. + Chứng minh rằng (khi các biểu thức có nghĩa).
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường Quốc tế Á Châu - TP HCM
Nhằm giúp các em học sinh lớp 10 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 10 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường Quốc tế Á Châu, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường Quốc tế Á Châu – TP HCM : + Cho tam giác ABC có BC = a, AC = b = 2, C = 30. Tính cạnh AB, góc A và diện tích tam giác ABC. + Trong mặt phẳng hệ trục tọa độ Oxy cho điểm A(2;-3), điểm B(1;2) và hai đường thẳng d1 và d2. a) Viết phương trình tổng quát của đường thẳng AB. b) Viết phương trình đường thẳng (d) đi qua A và song song với đường thẳng d1. c) Tìm tọa độ điểm M đối xứng với B qua d2. + Giải các bất phương trình sau.