Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề đa thức một biến Toán 7

Tài liệu gồm 30 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề đa thức một biến trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. + Đa thức một biến (gọi tắt là đa thức) là tổng của những đơn thức của cùng một biến; mỗi đơn thức trong tổng gọi là một hạng tử của đa thức đó. + Số 0 cũng được gọi là một đa thức, gọi là đa thức không. + Kí hiệu: Ta thường kí hiệu đa thức bằng một chữ cái in hoa. Đôi khi còn viết thêm kí hiệu biến trong ngoặc đơn. PHẦN II . CÁC DẠNG BÀI. Dạng 1 : Thu gọn và sắp xếp đa thức một biến. + Thu gọn đa thức một biến: Thực hiện phép tính cộng các đơn thức cùng bậc. + Sắp xếp đa thức một biến (đa thức khác 0): Viết đa thức dưới dạng thu gọn và sắp xếp các hạng tử của nó theo lũy thừa giảm của biến. Dạng 2 : Tìm bậc và các hệ số của một đa thức. Trong một đa thức thu gọn và khác đa thức không: + Bậc của hạng tử có bậc cao nhất gọi là bậc của đa thức đó. + Hệ số của hạng tử có bậc cao nhất gọi là hệ số cao nhất của đa thức đó. + Hệ số của hạng tử có bậc 0 gọi là hệ số tự do của đa thức đó. Chú ý: + Đa thức không thì không có bậc. + Trong một đa thức thu gọn, hệ số cao nhất phải khác 0 (các hệ số khác có thể bằng 0). + Muốn tìm bậc của một đa thức chưa thu gọn, ta phải thu gọn đa thức đó. Dạng 3 : Tính giá trị của đa thức. Để tính giá trị của đa thức ta thực hiện theo các bước: + Bước 1: Thu gọn, sắp xếp đa thức theo lũy thừa giảm dần của biến. + Bước 2: Thay giá trị cụ thể của biến vào đa thức và thực hiện các phép tính. + Bước 3: Kết luận. Dạng 4 : Nghiệm của đa thức một biến. Nếu tại x a đa thức P x có giá trị bằng 0 thì ta nói a (hoặc x a) là một nghiệm của đa thức đó. + a là nghiệm của P x khi P a 0. + Một đa thức (khác đa thức không) có thể có một nghiệm, hai nghiệm … hoặc không có nghiệm. + Số nghiệm số của một đa thức không vượt quá bậc của nó. Để tìm nghiệm của đa thức P x ta cho P x 0 rồi tìm giá trị x thỏa mãn. Để chứng minh x a là nghiệm của của đa thức P x ta chỉ ra P a 0. Để chứng minh x a là không nghiệm của của đa thức P x ta chỉ ra P a 0. Gọi ẩn và lập biểu thức chứa biến biểu diễn mối quan hệ giữa đại lượng theo ẩn. PHẦN III . BÀI TẬP TỰ LUYỆN.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề tính chất tia phân giác của một góc
Tài liệu gồm 10 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tính chất tia phân giác của một góc, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 3: Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy trong tam giác. Mục tiêu : Kiến thức: + Phát biểu được các định lí về tính chất các điểm thuộc tia phân giác. Kĩ năng: + Vận dụng được tính chất tia phân giác của một góc để chứng minh tính chất hình học. + Sử dụng được định lí đảo để chứng minh một tia là tia phân giác của một góc. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Vận dụng tính chất phân giác của một góc để chứng minh các đoạn thẳng bằng nhau. Áp dụng định lí thuận: Điểm nằm trên tia phân giác của một góc thì cách đều hai cạnh của góc đó. Dạng 2 : Chứng minh một tia là tia phân giác của một góc. Cách 1. Sử dụng định lí đảo. Cách 2. Sử dụng định nghĩa tia phân giác. Cách 3. Chứng minh hai góc bằng nhau nhờ hai tam giác bằng nhau. Cách 4. Dùng tính chất đường trung tuyến trong tam giác cân đồng thời là đường phân giác.
Chuyên đề tính chất ba đường trung tuyến của tam giác
Tài liệu gồm 11 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tính chất ba đường trung tuyến của tam giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 3: Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy trong tam giác. Mục tiêu : Kiến thức: + Phát biểu được định nghĩa đường trung tuyến của tam giác. + Phát biểu được tính chất ba đường trung tuyến của tam giác. Kĩ năng: + Vẽ được các đường trung tuyến của tam giác. + Vận dụng được các định nghĩa và tính chất về đường trung tuyến. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Sử dụng tính chất trọng tâm tam giác. – Ba đường trung tuyến của tam giác đồng quy tại một điểm. Điểm này gọi là trọng tâm của tam giác. – Trọng tâm của tam giác cách mỗi đỉnh một khoảng bằng 2 3 độ dài đường trung tuyến đi qua đỉnh ấy. Bước 1. Xác định trọng tâm nằm trên đường trung tuyến nào. Bước 2. Sử dụng linh hoạt tỉ lệ khoảng cách từ trọng tâm đến hai đầu đoạn thẳng trung tuyến. Dạng 2 : Chứng minh một điểm là trọng tâm tam giác. Sử dụng tính chất trọng tâm. Chẳng hạn để chứng minh G là trọng tâm tam giác ABC, có ba đường trung tuyến AD, BE, CF thì ta chứng minh. Cách 1. G AD và 2 3 GA AD hoặc G BE và 2 3 GB BE hoặc G CF và 2 3 GC CF. Cách 2. Chứng minh G là giao điểm của hai trong ba đường trung tuyến của tam giác ABC. Dạng 3 : Đường trung tuyến của tam giác cân, tam giác đều, tam giác vuông. Chú ý đến tính chất của tam giác cân, tam giác đều và tam giác vuông.
Chuyên đề quan hệ giữa ba cạnh của một tam giác, bất đẳng thức tam giác
Tài liệu gồm 08 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề quan hệ giữa ba cạnh của một tam giác, bất đẳng thức tam giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 3: Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy trong tam giác. Mục tiêu : Kiến thức: + Phát biểu được định lí và hệ quả của bất đẳng thức tam giác. Kĩ năng: + Vận dụng được định lí và hệ quả của bất đẳng thức tam giác trong các bài toán. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Sử dụng điều kiện tồn tại một tam giác dựa vào yếu tố độ dài ba cạnh. – Ba đoạn thẳng a, b, c lập thành một tam giác nếu. – Trong trường hợp xác định được a là số lớn nhất trong ba số a, b, c thì điều kiện tồn tại tam giác chỉ cần a b c. Bước 1. Dựa vào bất đẳng thức tam giác xét các trường hợp. Bước 2. Lựa chọn giá trị thích hợp. Dạng 2 : Chứng minh các bất đẳng thức về độ dài. – Sử dụng bất đẳng thức tam giác và các biến đổi về bất đẳng thức. – Cộng cùng một số vào hai vế của bất đẳng thức. – Cộng từng vế hai bất đẳng thức cùng chiều.
Chuyên đề quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu
Tài liệu gồm 15 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 3: Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy trong tam giác. Mục tiêu : Kiến thức: + Phân biệt được đường vuông góc, đường xiên, hình chiếu. + Phát biểu được quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu. Kĩ năng: + Vận dụng được mối quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu trong bài tập. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : So sánh hai đường xiên hoặc hai hình chiếu. – Định lí: Trong hai đường xiên kẻ từ một điểm nằm ngoài một đường thẳng đến đường thẳng đó thì: + Đường xiên nào có hình chiếu lớn hơn thì lớn hơn. + Đường xiên nào lớn hơn thì có hình chiếu lớn hơn. – Thực hiện theo hai bước: + Bước 1. Xác định xem hai đoạn thẳng cần so sánh là đường xiên hay hình chiếu của đường xiên lên đường thẳng: Nếu là đường xiên thì cần so sánh hai hình chiếu của chúng (dựa vào giả thiết bài toán); Nếu là hình chiếu của hai đường xiên thì cần so sánh hai đường xiên (dựa vào giả thiết bài toán). + Bước 2. So sánh hai đoạn thẳng dựa vào định lí đường xiên – hình chiếu. Dạng 2 : Quan hệ giữa đường vuông góc và đường xiên. Sử dụng định lí: “Đường vuông góc ngắn hơn mọi đường xiên kẻ từ một điểm đến cùng một đường thẳng”.