Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Lý thuyết, dạng toán và bài tập chuyên đề phương pháp tọa độ trong không gian

Tài liệu gồm 428 trang, tóm tắt lý thuyết, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề phương pháp tọa độ trong không gian, giúp học sinh học tốt chương trình Hình học 12 chương 3 và ôn tập thi tốt nghiệp THPT môn Toán. BÀI 1 – HỆ TỌA ĐỘ TRONG KHÔNG GIAN OXYZ. A TÓM TẮT LÝ THUYẾT. 1. Tọa độ của điểm và véc-tơ. 1.1 Hệ tọa độ. 1.2 Tọa độ của một điểm. 1.3 Tọa độ của véc-tơ. 2. Biểu thức tọa độ của các phép toán véc-tơ. 3. Tích vô hướng. 3.1 Biểu thức tọa độ tích vô hướng. 4. Phương trình mặt cầu. 5. Một số yếu tố trong tam giác. B CÁC DẠNG TOÁN. + Dạng 1.1: Sự cùng phương của hai véc-tơ. Ba điểm thẳng hàng. + Dạng 1.2: Tìm tọa độ điểm thỏa điều kiện cho trước. + Dạng 1.3: Một số bài toán về tam giác. C CÂU HỎI TRẮC NGHIỆM. 1. Mức độ nhận biết. Bảng đáp án. 2. Mức độ thông hiểu. Bảng đáp án. 3. Mức độ vận dụng thấp. Bảng đáp án. 4. Mức độ vận dụng cao. Bảng đáp án. BÀI 2 – PHƯƠNG TRÌNH MẶT PHẲNG. A TÓM TẮT LÝ THUYẾT. 1. Tích có hướng của hai véc-tơ. 2. Vectơ pháp tuyến của mặt phẳng. 3. Phương trình tổng quát của mặt phẳng. B CÁC DẠNG TOÁN. + Dạng 2.4: Sự đồng phẳng của ba vec-tơ, bốn điểm đồng phẳng. + Dạng 2.5: Diện tích của tam giác. + Dạng 2.6: Thể tích khối chóp. + Dạng 2.7: Thể tích khối hộp. + Dạng 2.8: Lập phương trình mặt phẳng đi qua một điểm và có vectơ pháp tuyến cho trước. + Dạng 2.9: Lập phương trình mặt phẳng trung trực của đoạn thẳng. + Dạng 2.10: Lập phương trình mặt phẳng đi qua một điểm và có cặp vectơ chỉ phương cho trước. + Dạng 2.11: Lập phương trình mặt phẳng đi qua một điểm và song song mặt phẳng cho trước. + Dạng 2.12: Lập phương trình mặt phẳng đi qua ba điểm phân biệt không thẳng hàng. + Dạng 2.13: Lập phương trình mặt phẳng đi qua một điểm và vuông góc với đường thẳng đi qua hai điểm cho trước. + Dạng 2.14: Lập phương trình mặt phẳng đi qua một điểm và vuông góc với hai mặt phẳng cắt nhau cho trước. + Dạng 2.15: Lập phương trình mặt phẳng đi qua hai điểm và vuông góc với một mặt phẳng cắt nhau cho trước. + Dạng 2.16: Lập phương trình mặt phẳng tiếp xúc với mặt cầu tại điểm cho trước. + Dạng 2.17: Viết phương trình của mặt phẳng liên quan đến mặt cầu và khoảng cách. + Dạng 2.18: Viết phương trình mặt phẳng liên quan đến góc hoặc liên quan đến tam giác. + Dạng 2.19: Các dạng khác về viết phương trình mặt phẳng. + Dạng 2.20: Ví trí tương đối của hai mặt phẳng. + Dạng 2.21: Vị trí tương đối của mặt phẳng và mặt cầu. + Dạng 2.22: Tính khoảng cách từ một điểm đến một mặt phẳng. Tìm hình chiếu của một điểm trên mặt phẳng. Tìm điểm đối xứng của một điểm qua mặt phẳng. + Dạng 2.23: Tìm tọa độ hình chiếu của điểm trên mặt phẳng. Điểm đối xứng qua mặt phẳng. C CÂU HỎI TRẮC NGHIỆM. 1. Mức độ nhận biết. Bảng đáp án. 2. Mức độ thông hiểu. Bảng đáp án. 3. Mức độ vận dụng thấp. Bảng đáp án. 4. Mức độ vận dụng cao. Bảng đáp án. BÀI 3 – PHƯƠNG TRÌNH ĐƯỜNG THẲNG TRONG KHÔNG GIAN. A TÓM TẮT LÝ THUYẾT. B CÁC DẠNG TOÁN. + Dạng 3.24: Viết phương trình đường thẳng khi biết một điểm thuộc nó và một véc-tơ chỉ phương. + Dạng 3.25: Viết phương trình của đường thẳng đi qua hai điểm cho trước. + Dạng 3.26: Viết phương trình đường thẳng đi qua điểm M cho trước và vuông góc với mặt phẳng (α) cho trước. + Dạng 3.27: Viết phương trình đường thẳng đi qua điểm M và song song với một đường thẳng cho trước. + Dạng 3.28: Đường thẳng d đi qua điểm M và song song với hai mặt phẳng cắt nhau (P) và (Q). + Dạng 3.29: Đường thẳng d qua M song song với mp(P) và vuông góc với d0 (d0 không vuông góc với ∆). + Dạng 3.30: Viết phương trình đường thẳng d đi qua điểm M và vuông góc với hai đường thẳng chéo nhau d1 và d2. + Dạng 3.31: Viết phương trình đường thẳng đi qua điểm A đồng thời cắt cả hai đường thẳng d1 và d2. + Dạng 3.32: Viết phương trình đường thẳng đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d2. + Dạng 3.33: Viết phương trình đường thẳng d đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d1. + Dạng 3.34: Viết phương trình đường thẳng d nằm trong mặt phẳng (P) đồng thời cắt cả hai đường thẳng d1 và d2. + Dạng 3.35: Viết phương trình đường thẳng d song song với đường thẳng d0 đồng thời cắt cả hai đường thẳng d1 và d2. + Dạng 3.36: Viết phương trình đường thẳng d song song và cách đều hai đường thẳng song song cho trước và nằm trong mặt phẳng chứa hai đường thẳng đó. + Dạng 3.37: Viết phương trình đường thẳng d là đường vuông góc chung của hai đường thẳng chéo nhau cho trước. + Dạng 3.38: Viết phương trình tham số của đường thẳng d0 là hình chiếu của đường thẳng d trên mặt phẳng (P). C CÂU HỎI TRẮC NGHIỆM. 1. Mức độ nhận biết. Bảng đáp án. 2. Mức độ thông hiểu. Bảng đáp án. 3. Mức độ vận dụng thấp. Bảng đáp án. 4. Mức độ vận dụng cao. Bảng đáp án.

Nguồn: toanmath.com

Đọc Sách

Phương pháp siêu tốc giải trắc nghiệm môn Toán chuyên đề hình học giải tích trong không gian
Cuốn sách Phương pháp siêu tốc giải trắc nghiệm môn Toán chuyên đề hình học giải tích trong không gian của các tác giả Lương Đức Trọng, Đặng Đình Hanh, Phạm Hoàng Hà gồm 360 trang với các chuyên đề bám sát các bài học trong SGK và một số chuyên đề mở rộng, nâng cao đáp ứng cho các bài tập có tính chất phân loại cao trong đề thi. Cấu trúc của mỗi chuyên đề gồm: tóm tắt nội dung kiến thức cơ bản, các dạng bài tập cơ bản, các ví dụ ở dạng bài tập trắc nghiệm khách quan được phân hóa theo 4 mức độ: nhận biết, thông hiểu, vận dụng và vận dụng cao; trong đó các bài tập cơ bản chiếm khoảng 70% và các bài tập nâng cao chiếm 30%. Ở mỗi ví dụ, ngoài việc trình bày lời giải để học sinh nắm vững kiến thức cơ bản, trong nhiều ví dụ có trình bày những nhận xét đặc thù để giúp học sinh có thể nhanh chóng loại bỏ một hoặc hai đáp án gây nhiễu. Đặc biệt, sau nhiều ví dụ có phần thủ thuật chọn nhanh để giúp học sinh nhanh chóng tìm được đáp án chính xác. Trong chuyên đề cuối cùng, ngoài các bài tập tổng hợp của hình giải tích không gian còn có phần ứng dụng của hình giải tích không gian vào giải một số bài tập hình không gian. Cuối mỗi chuyên đề có bài tập để học sinh tự rèn luyện. Kết thúc mỗi chuyên đề là phần Đáp án – Hướng dẫn giải, phần này bao gồm đáp án của tất cả các câu hỏi, bài tập và hướng dẫn giải những câu hỏi, bài tập điển hình hoặc những bài tập khó để học sinh có thể đối chiếu, qua đó giúp học sinh tích lũy kinh nghiệm, hình thành phương pháp giải các bài tập. [ads] Sách gồm các chủ đề : 1. Tọa độ trong không gian 2. Tích có hướng của hai vectơ và một số ứng dụng 3. Phương trình mặt phẳng 4. Phương trình đường thẳng 5. Vị trí tương đối của đường thẳng, mặt phẳng 6. Bài toán về hình chiếu vuông góc trong không gian 7. Góc và khoảng cách 8. Phương trình mặt cầu 9. Điểm, đường thẳng, mặt phẳng và mặt cầu 10. Ôn tập, các bài toán tổng hợp 11. Một số đề tổng hợp
Chuyên đề mặt cầu trong không gian Oxyz - Phạm Văn Long
Tài liệu gồm 28 trang gồm lý thuyết mặt cầu, hướng dẫn phương pháp giải các dạng toán và bài tập trắc nghiệm chuyên đề mặt cầu trong không gian Oxyz. 1. Tóm tắt lý thuyết, phương trình  mặt cầu và một số công thức tính cơ bản 2. Ví dụ minh họa về 2 dạng toán + Dạng 1: Viết phương trình mặt cầu Thuật toán 1: Bước 1: Xác định tâm I Bước 2: Xác định bán kính R của (S) Bước 3: Mặt cầu (S) có tâm I và bán kính R Thuật toán 2: Gọi phương trình dạng tổng quát của (S), sử dụng các điều kiện để tìm các tham số [ads] Kỹ năng xác định tâm và bán kính của đường tròn trong không gian Cho mặt cầu (S) tâm I bán kính R. Mặt phẳng (P) cắt (S) theo một đường tròn (C) Bước 1: Lập phương trình đường thẳng d qua I và vuông góc với mặt phẳng (P) Bước 2: Tâm H của đường tròn (C) là giao điểm của d và mặt phẳng (P) Bước 3: Gọi r là bán kính của (C) + Dạng 2: Sự tương giao và sự tiếp xúc Đường thẳng Δ là tiếp tuyến của (S) ⇔ d(I; Δ) = R Mặt phẳng (α) là tiếp diện của (S) ⇔ d(I; (α)) = R 3. Bài tập trắc nghiệm tự luyện được sắp xếp theo mức độ phân loại
Hiểu rõ bản chất hình học của bài toán cực trị tọa độ không gian - Võ Trọng Trí
Để giải nhanh bài toán cực trị trong hình học tọa độ không gian, chúng ta cần tìm được vị trí đặc biệt của nghiệm hình để cực trị (số đo góc, khoảng cách, độ dài) xảy ra. Khi biết vị trí đặc biệt đó, việc tính toán chỉ còn vài dòng đơn giản là ra kết quả. Sau đây các các bài toán cực trị tọa độ không gian thường gặp, bản chất hình học của nó và công thức giải nhanh bài toán đó. + Bài toán 1: Viết phương trình mặt phẳng đi qua một đường thẳng d và cách một điểm M ∉ d một khoảng lớn nhất. + Bài toán 2: Viết phương trình mặt phẳng (P) chứa đường thẳng d, tạo với đường thẳng d’(d’ không song song với d) một góc lớn nhất. + Bài toán 3: Viết phương trình đường thẳng d đi qua một điểm A cho trước và nằm trong mặt phẳng (P) cho trước và cách một điểm M cho trước một khoảng nhỏ nhất. (AM không vuông góc với (P)). + Bài toán 4: Viết phương trình đường thẳng d đi qua điểm A cho trước, nằm trong mặt phẳng (P) và cách điểm M (M khác A, MA không vuông góc với (P)) một khoảng lớn nhất. [ads] + Bài toán 5: Cho mặt phẳng (P) và điểm A ∈ (P), và đường thẳng d (d cắt (P) và d không vuông góc với (P)). Viết phương trình đường thẳng d’ đi qua A, nằm trong (P) và tạo với d một góc nhỏ nhất. + Bài toán 6: Cho mặt phẳng (P) và điểm A ∈ (P) và đường thẳng d cắt (P) tại điểm khác M khác A. Viết phương trình đường thẳng d’ nằm trong (P), đi qua A và khoảng cách giữa d và d’ lớn nhất. + Bài toán 7: Cho mặt phẳng (P) và đường thẳng d//(P). Viết phương trình đường thẳng d//d′ và cách d một khoảng nhỏ nhất. + Bài toán 8: Viết phương trình mặt phẳng đi qua điểm A và cách điểm M (khác A) một khoảng lớn nhất. + Bài toán 9: Các bài toán khác đòi hỏi chúng ta cần có trực giác hình học để giải nhanh.
Tuyển tập một số bài toán cực trị trong hình học tọa độ không gian - Lưu Huy Thưởng
Tài liệu gồm 20 trang tuyển chọn một số bài toán cực trị trong hình học tọa độ không gian, các bài toán được chia thành 2 phần: + Tuyển tập một số bài toán cực trị viết phương trình mặt phẳng + Tuyển tập một số bài toán cực trị viết phương trình đường thẳng Trích dẫn tài liệu : + Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: (x + 2)/1 = y/-2 = (z – 2)/2. Gọi Δ là đường thẳng qua điểm A(4;0;–1) song song với d. Gọi (P): Ax + By + Cz + D = 0 (A, B, C ∈ Z) là mặt phẳng chứa Δ và có khoảng cách đến d là lớn nhất. Khi đó M = A^2 + B^2 + C^2 có thể là giá trị nào sau đây? + Trong không gian với hệ toạ độ Oxyz, gọi (P) là mặt phẳng đi qua điểm M (1; 4; 9), cắt các tia Ox, Oy, Oz tại A, B, C sao cho biểu thức OA + OB + OC có giá trị nhỏ nhất. Mặt phẳng (P) đi qua điểm nào dưới đây? [ads] + Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(1; 5; 0), B(3; 3; 6) và đường thẳng (x + 1)/2 = (y – 1)/-1 = z/2. Gọi d là đường thẳng đi qua điểm B và cắt đường thẳng  tại điểm C sao cho diện tích tam giác ABC có giá trị nhỏ nhất. Đường thẳng d vuông góc với đường thẳng nào sau đây?