Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Olympic Toán 7 năm 2021 2022 phòng GD ĐT Kinh Môn Hải Dương

Nội dung Đề Olympic Toán 7 năm 2021 2022 phòng GD ĐT Kinh Môn Hải Dương Bản PDF - Nội dung bài viết Đề Olympic Toán 7 năm 2021-2022 phòng GD&ĐT Kinh Môn Hải Dương Đề Olympic Toán 7 năm 2021-2022 phòng GD&ĐT Kinh Môn Hải Dương Chào các thầy cô và các em học sinh lớp 7! Hôm nay, Sytu xin giới thiệu đến quý vị đề giao lưu Olympic cấp thị xã môn Toán lớp 7 năm học 2021-2022 do phòng Giáo dục và Đào tạo UBND thị xã Kinh Môn, tỉnh Hải Dương tổ chức. Trong đề thi này, có những câu hỏi thú vị như: Tìm các số nguyên x và y biết: x + xy + y = 2. Chứng minh rằng nếu a^2 + b^2 + c^2 + d^2 chia hết cho 2 thì a + b + c + d là hợp số. Trong tam giác ABC nhọn, chứng minh các điều sau: CHI là tam giác cân. M là trung điểm của đoạn AK. B, O, M thẳng hàng. Hy vọng rằng đề thi sẽ giúp các em rèn luyện kỹ năng và chuẩn bị tốt cho các cuộc thi Olympic sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Hưng Hà - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi khảo sát chất lượng học sinh giỏi cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Hưng Hà, tỉnh Thái Bình. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Hưng Hà – Thái Bình : + Một vật chuyển động trên các cạnh hình vuông. Trên hai cạnh đầu vật chuyển động với vận tốc 5 m/s, trên cạnh thứ ba với vận tốc 4 m/s, trên cạnh thứ tư với vận tốc 3 m/s. Hỏi độ dài cạnh hình vuông là bao nhiêu, biết rằng tổng thời gian vật chuyển động trên 4 cạnh là 59 giây. + Tìm giá trị nhỏ nhất của biểu thức D = 2022/(2023 – |x – 2024|) với x thuộc Z. + Cho tam giác ABC có AB < AC. Từ trung điểm D của BC vẽ đường vuông góc với tia phân giác của góc A tại H. Đường thẳng này cắt các tia AB tại E và tia AC tại F. Vẽ tia BM song song với EF (M thuộc AC). a) Chứng minh: tam giác ABM cân. b) Chứng minh: BE = CF = MF. c) Qua D kẻ đường thẳng vuông góc với BC cắt tia AH tại I. Chứng minh: IF vuông góc AC.
Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Ninh Giang - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Ninh Giang, tỉnh Hải Dương; kỳ thi được diễn ra vào ngày 25 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Ninh Giang – Hải Dương : + Cho x, y là các số nguyên thoả mãn. Tính giá trị biểu thức P = (3x + 4y – 5)^2022. + Cho x, y thuộc N* và p là số nguyên tố thoả mãn: x2 + xy = 2x + 2y + p2. Chứng minh rằng: y = p2 – 3. + Cho tam giác ABC có góc A = 60°. Tia phân giác của góc B cắt AC tại D và tia phân giác của góc C cắt AB tại E; BD và CE cắt nhau tại I. a) Tính số đo góc BIC b) Trên cạnh BC lấy điểm F sao cho BF = BE. Chứng ming rằng: FI = DI. c) Trên tia IF lấy điểm K sao cho IK = IB. Vẽ tam giác BCH đều (H và A khác phía với đường thẳng BC). Chứng minh ba điểm I, K, H thẳng hàng.
Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Chương Mỹ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề kiểm tra chất lượng học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Chương Mỹ, thành phố Hà Nội. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Chương Mỹ – Hà Nội : + Cho biểu thức f(x) = ax2 + bx + c, biết rằng giá trị của biểu thức f(x) tại x = 0, x = 1, x = -1 lần lượt bằng 2023; 2027 và 2025. Tính giá trị của biểu thức f(x) tại x = 2. + Ba phân số có tổng bằng 213/70, các tử của chúng tỉ lệ với 3; 4; 5. Các mẫu của chúng tỉ lệ với 5; 1; 2. Tìm ba phân số đó. + Cho tam giác ABC cân tại A, trên cạnh BC lấy điểm D (không trùng với B, C), trên tia đối của tia CB lấy điểm E sao cho BD = CE, các đường thẳng vuông góc với BC kẻ từ D và E theo thứ tự cắt các đường thẳng AB, AC lần lượt tại M và N. 1) Chứng minh rằng: DM = EN; 2) Đường thẳng BC cắt MN tại I. Chứng minh I là trung điểm của đoạn thẳng MN; 3) So sánh chu vi của tam giác ABC và chu vi của tam giác AMN; 4) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên BC.
Đề giao lưu HSG Toán 7 năm 2022 - 2023 phòng GDĐT Chí Linh - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND thành phố Chí Linh, tỉnh Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu HSG Toán 7 năm 2022 – 2023 phòng GD&ĐT Chí Linh – Hải Dương : + Cho tam giác ABC có 3 góc nhọn và AB < AC. Kẻ BE ⊥ AC tại E, CF ⊥ AB tại F, BE cắt CF tại H. Kẻ HQ // AC, HP // AB (Q AB P AC). a) Chứng minh rằng: AHQ = HAP b) Gọi M là trung điểm của BC. Chứng minh tam giác MEF cân và 𝐴𝐸𝐹 = 𝐴𝐵𝐶. c) Chứng minh rằng: HA + HB + HC < 2 3 (AB + AC + BC). + Một trường THCS làm bể tập bơi cho học sinh có dạng hình hộp chữ nhật với chiều dài 15m, chiều rộng 10m, chiều sâu 1,2m. Người ta lát gạch men các mặt xung quanh và đáy của bể (Coi mạch ghép giữa các viên gạch men không đáng kể). a) Tính diện tích gạch men cần dùng để lát bể bơi đó? b) Cần phải bơm bao nhiêu mét khối nước vào bể để mực nước trong bể thấp hơn mép trên của bể là 20cm (Ban đầu bể không có nước)? + Chứng tỏ phân số có dạng n 4 3n 11 là phân số tối giản với mọi số nguyên n.