Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Toàn cảnh đề chính thức và đề minh họa THPT 2020 môn Toán của Bộ GDĐT

Tài liệu gồm 198 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Word Và Biên Soạn Tài Liệu Toán, phân loại và hướng dẫn giải các câu hỏi và bài toán trong đề chính thức và đề minh họa THPT 2020 môn Toán của Bộ Giáo dục và Đào tạo. Mục lục tài liệu toàn cảnh đề chính thức và đề minh họa THPT 2020 môn Toán của Bộ GD&ĐT: 1. PHÉP ĐẾM (QUY TẮC CỘNG – QUY TẮC NHÂN). 2. HOÁN VỊ – CHỈNH HỢP – TỔ HỢP. 2.1 Đếm số (chỉ dùng một loại P hoặc A hoặc C). 2.2 Chọn người, vật. 3. XÁC SUẤT. 4. CẤP SỐ CỘNG. 5. CẤP SỐ NHÂN. 6. ĐƯỜNG THẲNG VUÔNG GÓC MẶT PHẲNG. 6.1 Góc giữa đường thẳng và mặt phẳng. 6.2 Góc giữa đường thẳng và mặt phẳng. 7. KHOẢNG CÁCH. 7.1 Từ chân H của đường cao đến mặt phẳng cắt đường cao. 7.2 Từ điểm M (khác H) đến mặt phẳng cắt đường cao. 7.3 Hai đường chéo nhau (vẽ đoạn vuông góc chung). 7.4 Hai đường chéo nhau (mượn mặt phẳng). 8. TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ. 8.1 Xét tính đơn điệu của hàm số (biết đồ thị, bảng biến thiên của y). 8.2 Điều kiện để hàm số bậc ba đơn điệu trên khoảng K. 8.3 Điều kiện để hàm số nhất biến đơn điệu trên khoảng K. 8.4 Đơn điệu liên quan hàm hợp, hàm ẩn. 8.5 Ứng dụng tính đơn điệu vào PT – BPT – HPT – BĐT. 9. CỰC TRỊ CỦA HÀM SỐ. 9.1 Tìm cực trị của hàm số cho bởi công thức của y, y’. 9.2 Tìm cực trị, điểm cực trị, số điểm cực trị (khi biết đồ thị, bảng biến thiên của y). 9.3 Tìm cực trị, điểm cực trị, số điểm cực trị (khi biết đồ thị, bảng xét dấu của y’). 9.4 Cực trị liên quan hàm hợp, hàm ẩn. 9.5 Cực trị liên quan hàm chứa dấu giá trị tuyệt đối. 10. GIÁ TRỊ LỚN NHẤT – GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ. 10.1 GTLN – GTNN của f(x) trên đoạn [a;b] biết biểu thức f(x). 10.2 Tìm m để hàm số f(x) có GTLN – GTNN thỏa mãn điều kiện cho trước. 10.3 GTLN – GTNN hàm nhiều biến dạng khác. 11. TIỆM CẬN CỦA ĐỒ THỊ HÀM SỐ. 11.1 Tiệm cận đồ thị hàm số phân thức hữu tỷ, không chứa tham số. 11.2 Tiệm cận đồ thị hàm số f(x) dựa vào bảng biến thiên không tham số. 12. ĐỌC ĐỒ THỊ – BIẾN ĐỔI ĐỒ THỊ. 12.1 Nhận dạng các hàm số thường gặp (biết đồ thị, bảng biến thiên). 12.2 Xét dấu hệ số của biểu thức (biết đồ thị, bảng biến thiên). 12.3 Đọc đồ thị của đạo hàm (các cấp. 12. TƯƠNG GIAO CỦA HAI ĐỒ THỊ. 12.1 Tìm toạ độ (đếm) giao điểm. 12.2 Đếm số nghiệm phương trình cụ thể (cho đồ thị, bảng biến thiên). 12.3 Tương giao liên quan hàm hợp, hàm ẩn. 12.4 Điều kiện để f(x) = g(m) có n nghiệm (chứa GTTĐ). 12.5 Điều kiện để f(x) = g(m) có n nghiệm thuộc K (không GTTĐ). 13. MŨ – LŨY THỪA. 13.1 Kiểm tra quy tắc biến đổi lũy thừa, tính chất. 13.2 Tính toán, rút gọn các biểu thức có chứa biến(a, b, c, x, y, . . .). 14. LOGARIT. 14.1 Câu hỏi lý thuyết và tính chất. 14.2 Biến đổi các biểu thức logarit liên quan a, b, x, y. 14.3 Tính giá trị các biểu thức logarit không dùng BĐT. 14.4 Dạng toán khác về logarit. 15. HÀM SỐ MŨ – LOGARIT. 15.1 Tập xác định liên quan hàm số mũ, hàm số logarit. 15.2 Đạo hàm liên quan hàm số mũ, hàm số logarit. 15.3 Đồ thị liên quan hàm số mũ, logarit. 15.4 Câu hỏi tổng hợp liên quan hàm số lũy thừa, mũ, logarit. 15.5 Bài toán lãi suất. 15.6 Bài toán tăng trưởng. 15.6 Hàm số mũ,logarit chứa tham số. 15.6 GTLN – GTNN liên quan hàm mũ, hàm logarit(nhiều biến). 16. PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH MŨ. 16.1 PT – BPT mũ cơ bản, gần cơ bản (không tham số). 16.2 Phương pháp đưa về cùng cơ số (không tham số). 16.3 Phương pháp hàm số, đánh giá (không tham số). 17. PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH LOGARIT. 17.1 Câu hỏi lý thuyết. 17.2 PT – BPT logarit cơ bản, gần cơ bản (không tham số). 17.3 Phương pháp đưa về cùng cơ số (không tham số). 17.4 Phương pháp phân tích thành nhân tử (không tham số). 17.5 Phương pháp hàm số, đánh giá (không tham số). 17.6 Phương trình logarit có chứa tham số. 17.7 Phương trình, bất phương trình tổ hợp cả mũ và logarit có tham số. 18. NGUYÊN HÀM. 18.1 Định nghĩa, tính chất của nguyên hàm. 18.2 Nguyên hàm của hàm số cơ bản, gần cơ bản. 18.3 Nguyên hàm phân thức. 18.4 Phương trình nguyên hàm từng phần. 18.5 Nguyên hàm kết hợp đổi biến và từng phần hàm xác định. 18.6 Nguyên hàm liên quan đến hàm ẩn. 19. TÍCH PHÂN. 19.1 Kiểm tra định nghĩa, tính chất của tích phân. 19.2 Tích phân cơ bản, kết hợp tính chất. 19.3 Phương pháp tích phân từng phần hàm xác định. 19.4 Kết hợp đổi biến và từng phần tính tích phân hàm xác định. 19.5 Tích phân liên quan đến phương trình hàm ẩn. 20. ỨNG DỤNG TÍCH PHÂN. 20.1 Xác định công thức tính diện tích, thể tích dựa vào đồ thị. 20.2 Diện tích hình phẳng được giới hạn bởi các đồ thị hàm xác định. 20.3 Thể tích giới hạn bởi các đồ thị (tròn xoay) hàm xác định. 21. KHÁI NIỆM SỐ PHỨC. 21.1 Các yếu tố và thuộc tính cơ bản của số phức. 22. CÁC PHÉP TOÁN SỐ PHỨC. 22.1 Thực hiện các phép toán cơ bản về số phức. 22.2 Xác định các yếu tố của số phức (phần thực, ảo, mô đun, liên hợp) qua các phép toán. 22.3 Giải phương trình bậc nhất theo z (và z liên hợp). 23. BIỂU DIỄN HÌNH HỌC CỦA SỐ PHỨC. 23.1 Câu hỏi lý thuyết, biểu diễn hình học của số phức. 23.2 Tập hợp điểm biểu diễn là đường tròn, hình tròn. 24. PHƯƠNG TRÌNH BẬC HAI VỚI HỆ SỐ THỰC. 24.1 Tính toán biểu thức nghiệm. 24.1 Các bài toán biểu diễn hình học nghiệm của phương trình. 24.1 Các bài toán khác về phương trình. 25. THỂ TÍCH KHỐI CHÓP. 25.1 Câu hỏi dạng lý thuyết (công thức V, h, B). 25.2 Thể tích khối chóp đều. 25.3 Thể tích khối chóp khác. 25.4 Tỉ số thể tích trong khối chóp. 26. THỂ TÍCH KHỐI LĂNG TRỤ – ĐA DIỆN KHÁC. 26.1 Câu hỏi dạng lý thuyết(Công thức V, h, B). 26.2 Thể tích khối lập phương, khối hộp chữ nhật. 26.3 Thể tích khối lăng trụ đều. 26.4 Thể tích khối đa diện phức tạp. 27. KHỐI NÓN. 27.1 Câu hỏi lý thuyết về khối nón. 27.1 Diện tích xung quanh, diện tích toàn phần, thể tích (liên quan) khối nón khi biết các dữ kiện cơ bản. 28. KHỐI TRỤ. 28.1 Diện tích xung quanh, diện tích toàn phần, thể tích (liên quan) khối trụ khi biết các dữ kiện cơ bản. 28.2 Bài toán thực tế về khối trụ. 29. KHỐI CẦU. 29.1 Câu hỏi chỉ liên quan đến biến đổi V, S, R. 29.2 Khối cầu nội – ngoại tiếp, liên kết khối đa diện. 29.3 Bài toán tổng hợp về khối nón, khối trụ, khối cầu. 30. TỌA ĐỘ ĐIỂM – VECTƠ. 30.1 Hình chiếu của điểm lên các trục tọa độ, lên các mặt phẳng tọa độ và điểm đối xứng của nó. 31. PHƯƠNG TRÌNH MẶT CẦU. 31.1 Tìm tâm và bán kính, điều kiện xác định mặt cầu. 32.1 Điểm thuộc mặt cầu thoả điều kiện. 32. PHƯƠNG TRÌNH MẶT PHẲNG. 32.1 Tìm VTPT, các vấn đề về lý thuyết. 32.2 Phương trình mặt phẳng trung trực của đoạn thẳng. 32.3 Phương trình mặt phẳng qua một điểm, dễ tìm VTPT (không dùng tích có hướng). 33.4 Phương trình mặt phẳng qua một điểm, song song với một mặt phẳng. 33.5 Phương trình mặt phẳng theo đoạn chắn. 33.6 Phương trình mặt phẳng qua một điểm, vuông góc với đường thẳng. 33. PHƯƠNG TRÌNH ĐƯỜNG THẲNG. 33.1 Các câu hỏi chưa phân dạng. 33.2 Tìm VTCP, các vấn đề về lý thuyết. 33.3 Phương trình đường thẳng qua một điểm, dễ tìm VTCP (không dùng tích có hướng). 33.4 Phương trình đường thẳng qua một điểm, thoả điều kiện khác. 33.5 Toán GTLN – GTNN liên quan đến đường thẳng.

Nguồn: toanmath.com

Đọc Sách

Chắt lọc tinh túy 3 câu phân loại trong đề thi thử môn Toán Tài liệu Lovebook
Nội dung Chắt lọc tinh túy 3 câu phân loại trong đề thi thử môn Toán Tài liệu Lovebook Bản PDF - Nội dung bài viết Tài liệu học Toán tinh túy từ Lovebook Tài liệu học Toán tinh túy từ Lovebook Tài liệu "Chắt lọc tinh túy của 3 câu phân loại trong các đề thi thử THPT Quốc gia môn Toán" từ Lovebook là một bộ tài liệu giúp học sinh luyện thi hiệu quả. Cuốn sách này đã sắp xếp các bài giảng một cách logic, phù hợp cho việc ôn tập trong một tháng. Đáng chú ý ở đây là sự tập trung vào các bài tập phân loại, so sánh và phân tích sâu vấn đề.
Công phá đề thi THPT QG môn Toán bằng kỹ thuật Casio Lâm Hữu Minh
Nội dung Công phá đề thi THPT QG môn Toán bằng kỹ thuật Casio Lâm Hữu Minh Bản PDF - Nội dung bài viết Công phá đề thi THPT QG môn Toán bằng kỹ thuật Casio Lâm Hữu Minh Công phá đề thi THPT QG môn Toán bằng kỹ thuật Casio Lâm Hữu Minh Tài liệu "Kỹ thuật CASIO luyện thi THPT Quốc gia" do tác giả Lâm Hữu Minh biên soạn gồm 122 trang hướng dẫn sử dụng Casio để giải các dạng toán trong đề thi THPT Quốc gia. Kỹ thuật CASIO được áp dụng một cách sáng tạo và khác biệt so với cách dùng máy tính thông thường. Các phương pháp sử dụng máy tính Casio trong tài liệu này không chỉ giúp người học nhanh chóng và hiệu quả khi giải các bài toán mà còn phát triển sự linh hoạt, sáng tạo và tăng tốc độ xử lý vấn đề. Kỹ thuật CASIO hướng đến mục tiêu luyện cho người học sự dẻo tay, nhanh nhạy khi sử dụng máy tính Casio để giải toán. Đồng thời, tài liệu cũng cung cấp những phương pháp bấm máy hiệu quả, tránh những thao tác không cần thiết và giúp tối ưu hóa quá trình giải toán. Tuy đề thi ngày càng đòi hỏi tư duy và suy luận cao, nhưng việc học Kỹ thuật CASIO sẽ giúp người học vững chắc trong việc sử dụng máy tính Casio trong kỳ thi THPT Quốc gia. Việc thành thạo Kỹ thuật CASIO kết hợp với vốn kiến thức Toán học sẽ tạo nên sự tự tin và khả năng giải quyết vấn đề hiệu quả cho người học khi tham gia kỳ thi. Không chỉ giúp cải thiện kỹ năng sử dụng máy tính Casio mà còn khuyến khích sự sáng tạo và nghiên cứu trong việc giải các bài toán. Từ đó, người học có thể mở rộng và áp dụng Kỹ thuật CASIO vào các môn học khác.
Kiến thức và kinh nghiệm làm bài qua các kì thi Đại học môn Toán
Nội dung Kiến thức và kinh nghiệm làm bài qua các kì thi Đại học môn Toán Bản PDF - Nội dung bài viết Tài liệu "Kiến thức và kinh nghiệm làm bài qua các kì thi Đại học môn Toán" Tài liệu "Kiến thức và kinh nghiệm làm bài qua các kì thi Đại học môn Toán" Tác giả Nguyễn Phú Khánh, Võ Bá Quốc Cẩn và Trần Quốc Anh đã tạo ra một tài liệu đầy ý nghĩa và hữu ích dành cho những ai đang chuẩn bị cho kỳ thi Đại học môn Toán. Tài liệu này được scan từ sách gốc, có tổng cộng 271 trang, chứa đựng những kiến thức quý báu và kinh nghiệm thực tiễn trong việc giải các bài toán trong đề thi quốc gia hiện nay. Bằng việc nghiên cứu tài liệu này, bạn đọc sẽ được hướng dẫn cách trình bày bài toán một cách logic và hiệu quả, từ đó nâng cao khả năng làm bài thi của mình. Tác giả hy vọng rằng tài liệu sẽ giúp ích cho các thí sinh trong quá trình ôn tập và tự tin hơn khi đối diện với các bài toán khó khăn trong kỳ thi Đại học môn Toán.