Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 - 2024 sở GDĐT Hòa Bình

giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển dự thi học sinh giỏi cấp Quốc gia môn Toán THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Hòa Bình; kỳ thi được diễn ra vào ngày 29 tháng 08 năm 2023. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Hòa Bình : + Cho dãy số (an) xác định bởi a1 = 2 và an + 1. a) Chứng minh rằng dãy số (an) là dãy số tăng. b) Với mỗi số nguyên dương n đặt bn. Chứng minh rằng dãy số (bn) có giới hạn hữu hạn và tìm giới hạn đó. + Cho tam giác ABC nhọn nội tiếp đường tròn (O). Điểm P bất kỳ nằm trong tam giác ABC sao cho AP vuông góc BC. Hạ PE vuông góc AB, PF vuông góc AC (E thuộc AB, F thuộc AC). Gọi L là giao điểm của BF và CE, Q là giao điểm của AL và BC và X là giao điểm của EF và BC. a) Chứng minh rằng đường tròn (QEF) luôn đi qua một điểm cố định. b) Kẻ đường kính AK của đường tròn (O). Chứng minh rằng KL vuông góc AX. + Cho tập hợp X = {1; 2; …; 49}. Tô màu ít nhất 24 phần tử của X với điều kiện sau: nếu a, b thuộc X (không nhất thiết phân biệt) được tô màu thì a + b cũng được tô màu, miễn là a + b thuộc X. Gọi S là tổng tất cả các phần tử không được tô màu của tập X. a) Chứng minh rằng S =< 625. b) Chỉ ra tất cả các cách tô màu sao cho S = 625.

Nguồn: toanmath.com

Đọc Sách

Đề chọn học sinh giỏi lớp 12 môn Toán năm 2022 2023 sở GD ĐT Bà Rịa Vũng Tàu
Nội dung Đề chọn học sinh giỏi lớp 12 môn Toán năm 2022 2023 sở GD ĐT Bà Rịa Vũng Tàu Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển học sinh giỏi môn Toán lớp 12 THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào ngày 27 tháng 09 năm 2022. Trích dẫn Đề chọn học sinh giỏi Toán lớp 12 năm 2022 – 2023 sở GD&ĐT Bà Rịa – Vũng Tàu : + Cho dãy số (un) xác định bởi u1 = 1; un+1 = un + 2/un + n/un^4 với mọi n nguyên dương. Chứng minh dãy số (yn) với yn = un/n (n nguyên dương) có giới hạn hữu hạn. Tính giới hạn đó. + Cho tam giác ABC không cân nội tiếp đường tròn (O). Đường tròn (I) nội tiếp tam giác ABC tiếp xúc các cạnh BC, CA, AB lần lượt tại D, E, F. H là hình chiếu vuông góc của D lên EF. Tia IH cắt đường tròn (O) tại K. Đường tròn ngoại tiếp hai tam giác KBF, KCE cắt nhau tại T khác K. Gọi M là trung điểm TD. Qua M kẻ tiếp tuyến MN của đường tròn (I) (N là tiếp điểm khác D). a) Chứng minh T, E, F thẳng hàng và đường tròn ngoại tiếp tam giác NBC tiếp xúc (I). b) AN cắt đường tròn ngoại tiếp tam giác NBC ở S khác N. Hai tiếp tuyến của đường tròn (I) kẻ từ S cắt đường tròn ngoại tiếp tam giác NBC lần lượt tại P, Q. Chứng minh hai đường thẳng PQ và BC song song với nhau. + Hình vuông ABCD có độ dài cạnh là 2023 được chia thành 2023^2 ô vuông đơn vị. Ta kí hiệu (m;n) là ô ở hàng thứ m và cột thứ n. Người ta tô tất cả các ô vuông đơn vị bởi hai màu xanh, đỏ sao cho hai ô khác nhau đối xứng qua đường thẳng AC thì được tô khác màu. Gọi S là tập hợp các bộ ba số m, n, p đôi một khác nhau (không phân biệt thứ tự); m, n, p thuộc {1; 2; 3; …; 2023} sao cho các ô (m;n), (n;p) và (p;m) có cùng màu. Kí hiệu |S| là số phần tử tập hợp S. a) Tồn tại hay không cách tô màu sao cho |S| = 0? b) Chứng minh rằng: |S| =< 1^2 + 2^2 + … +1011^2.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Yên Bái
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Yên Bái Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi lập đội tuyển dự thi chọn học sinh giỏi Quốc gia THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đạo tạo tỉnh Yên Bái; kỳ thi được diễn ra vào ngày 30/09/2022 (ngày thi thứ nhất) và 01/10/2022 (ngày thi thứ hai). Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Yên Bái : + Cho tam giác ABC nhọn, không cân, có đường cao BE, CF cắt nhau tại H. Đường thẳng qua C song song với AB cắt BE tại M, đường thẳng qua B song song với AC cắt CF tại N. Điểm D là hình chiếu của H trên MN, I là trung điểm của BC. 1) Chứng minh AH, DI, EF đồng quy. 2) Gọi J là trung điểm của AH. Đường thẳng IJ cắt BE, CF lần lượt tại U, V. Đường tròn ngoại tiếp tam giác HUV và đường tròn ngoại tiếp tam giác AEF cắt nhau tại điểm T khác H. Chứng minh ba điểm A, T, I thẳng hàng. + Cho số nguyên dương n và số nguyên tố lẻ p. Biết p là ước của 3^2^n + 1, chứng minh p – 1 chia hết cho 2^(n + 1). + Cho 2n điểm phân biệt trong không gian (với n >= 2) sao cho trong chúng không có ba điểm nào thẳng hàng và không có bốn điểm nào cùng nằm trên một mặt phẳng. Xét n2 + 1 đoạn thẳng bất kì, mỗi đoạn có hai đầu mút là hai trong số 2n điểm trên. Chứng minh rằng có ít nhất một tam giác được tạo thành từ n2 + 1 đoạn thẳng trên.
Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 2023 sở GD ĐT Yên Bái
Nội dung Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 2023 sở GD ĐT Yên Bái Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Yên Bái; kỳ thi được diễn ra vào ngày 29 tháng 09 năm 2022. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 – 2023 sở GD&ĐT Yên Bái : + Cho hàm số y = (2x + 3)/(x + 3) có đồ thị (C) và đường thẳng d: y = -2x + m (m là tham số thực). Chứng minh rằng d cắt (C) tại hai điểm A, B phân biệt với mọi tham số thực m. Gọi k1, k2 lần lượt là hệ số góc của tiếp tuyến của (C) tại A và B. Tìm tất cả các giá trị của m để P = (k1)^2022 + (k2)^2022 đạt giá trị nhỏ nhất. + Cho đa giác (H) có 20 đỉnh nội tiếp một đường tròn. Chọn bốn đỉnh tùy ý của (H). Tính xác suất để chọn được bốn đỉnh tạo thành một tứ giác lồi có bốn cạnh đều là đường chéo của (H). + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Hai mặt phẳng (SAB) và (SAC) cùng vuông góc với mặt phẳng đáy. Góc giữa SC và mặt phẳng (SAB) bằng 30°. Gọi M, N lần lượt là các điểm thuộc cạnh BC, CD sao cho BM = 2MC và CN = 2ND. 1) Tính thể tích khối chóp S.ABCD. 2) Tính khoảng cách giữa hai đường thẳng DM và SN.