Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh THPT năm 2019 2020 sở GD ĐT Hải Dương

Nội dung Đề Toán tuyển sinh THPT năm 2019 2020 sở GD ĐT Hải Dương Bản PDF - Nội dung bài viết Đề Toán tuyển sinh THPT năm 2019 - 2020 sở GD ĐT Hải Dương Đề Toán tuyển sinh THPT năm 2019 - 2020 sở GD ĐT Hải Dương Ngày 02 tháng 06 năm 2019, sở Giáo dục và Đào tạo tỉnh Hải Dương đã tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2019 - 2020. Mục tiêu của kỳ thi là tuyển chọn các học sinh có học lực tốt để học tại các trường THPT trên địa bàn tỉnh Hải Dương. Đề Toán tuyển sinh lớp 10 THPT năm 2019 - 2020 sở GD&ĐT Hải Dương bao gồm 5 bài toán dạng tự luận. Đề thi chỉ có 1 trang, học sinh được 120 phút để làm bài thi và đề thi có lời giải chi tiết. Một số câu hỏi trong đề Toán tuyển sinh lớp 10 THPT năm 2019 - 2020 sở GD&ĐT Hải Dương: 1. Cho hai đường thẳng (d1): y = 2x - 5 và (d2): y = 4x - m (m là tham số). Tìm tất cả các giá trị của tham số m để (d1) và (d2) cắt nhau tại một điểm trên trục hoành Ox. 2. Một xưởng may cần may xong 360 bộ quần áo trong thời gian quy định. Tuy nhiên, xưởng may hơn 4 bộ quần áo mỗi ngày so với kế hoạch, dẫn đến hoàn thành kế hoạch trước 1 ngày. Hỏi theo kế hoạch, mỗi ngày xưởng cần may bao nhiêu bộ quần áo? 3. Cho phương trình: x^2 - (2m + 1)x - 3 = 0 (m là tham số). Chứng minh rằng phương trình đã cho luôn có hai nghiệm phân biệt x1, x2 với mọi m và tìm các giá trị của m sao cho |x1| - |x2| = 5 và x1 < x2.

Nguồn: sytu.vn

Đọc Sách

Đề thi vào 10 môn Toán cơ sở năm 2021 2022 sở GD ĐT Đồng Tháp
Nội dung Đề thi vào 10 môn Toán cơ sở năm 2021 2022 sở GD ĐT Đồng Tháp Bản PDF - Nội dung bài viết Đề thi vào 10 môn Toán cơ sở năm 2021 - 2022 sở GD&ĐT Đồng Tháp Đề thi vào 10 môn Toán cơ sở năm 2021 - 2022 sở GD&ĐT Đồng Tháp Sytu xin giới thiệu đến quý thầy cô và các em học sinh đề thi vào lớp 10 môn Toán cơ sở năm học 2021 - 2022 của sở GD&ĐT Đồng Tháp, với các câu hỏi sau: 1. Trong xưởng may, một tổ cần may 8400 chiếc khẩu trang trong một thời gian nhất định. Để tăng năng suất, tổ đã sản xuất nhiều hơn 102 chiếc khẩu trang mỗi ngày so với kế hoạch. Trước thời gian quy định 4 ngày, tổ đã may được 6416 chiếc khẩu trang. Hỏi số khẩu trang mà tổ cần phải may mỗi ngày theo kế hoạch là bao nhiêu? 2. Cho tam giác ABC vuông tại A, có đường cao AH. Biết AB = 3cm, AC = 4cm. Tính độ dài BC và độ dài đường cao AH. 3. Cho đường tròn (O) và một điểm M ở ngoài đường tròn đó. Kẻ hai tiếp tuyến MA, MB với đường tròn (O) (A, B là hai tiếp điểm). a) Chứng minh tứ giác MACB là tứ giác nội tiếp. b) Vẽ đường kính BK của đường tròn (O), H là điểm trên BK sao cho AH vuông góc BK. Điểm I là giao điểm của AH, MK. Chứng minh rằng I là trung điểm của HA. Kỳ thi sẽ diễn ra vào ngày 09 tháng 06 năm 2021, chúc quý thầy cô và các em học sinh ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!
Đề thi tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Nam Định
Nội dung Đề thi tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Nam Định Bản PDF Sytu xin gửi đến quý thầy cô và các em học sinh đề thi tuyển sinh lớp 10 môn Toán năm 2021-2022 của sở GD&ĐT Nam Định. Đề thi này bao gồm đáp án và lời giải chi tiết cho từng câu hỏi.Đề thi tuyển sinh lớp 10 môn Toán năm 2021-2022 của sở GD&ĐT Nam Định có các nội dung sau:1. Mảnh đất hình chữ nhật ABCD có chiều dài AB là 6m, chiều rộng BC là 4m. Người ta trồng hoa trên phần đất là nửa hình tròn có đường kính AD và nửa đường tròn có đường kính BC, phần còn lại để trồng cỏ. Yêu cầu tính diện tích phần đất trồng cỏ (phần được tô đậm trong hình vẽ, làm tròn đến chữ số thập phân thứ nhất).2. Cho O và điểm A nằm bên ngoài đường tròn. Từ A, kẻ các tiếp tuyến AB và AC với đường tròn O (B, C là các tiếp điểm). Kẻ đường kính BD của đường tròn O. a) Chứng minh ABOC là tứ giác nội tiếp đường tròn và BDC AOC. b) Kẻ CK vuông góc với BD tại K. Gọi I là giao điểm của AD và CK. Chứng minh rằng I là trung điểm của CK.3. Tìm tọa độ của tất cả các điểm thuộc parabol y = x^2 có tung độ bằng -8.Đề thi được lưu trữ trong file Word để quý thầy cô thuận tiện trong việc tham khảo và sử dụng. Hy vọng rằng đề thi sẽ giúp các em học sinh chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công!
Đề thi tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Sơn La
Nội dung Đề thi tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Sơn La Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Sơn La Đề thi tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Sơn La Sytu hân hạnh giới thiệu đến quý thầy cô và các em học sinh bộ đề thi tuyển sinh lớp 10 môn Toán năm 2021 - 2022 của sở GD&ĐT Sơn La. Đề thi này được biên soạn theo tỷ lệ 20% trắc nghiệm và 80% tự luận, với phần trắc nghiệm gồm 10 câu và phần tự luận gồm 5 câu. Thời gian làm bài là 120 phút. Đề thi đi kèm đáp án và lời giải chi tiết để giúp các em ôn tập hiệu quả. Kỳ thi sẽ diễn ra vào ngày 14 tháng 06 năm 2021, đây là cơ hội để các em học sinh thể hiện kiến thức và khả năng của mình trong môn Toán. Dưới đây là một số câu hỏi mẫu trong đề thi: Câu 1: Một trường THPT nhận được 650 hồ sơ đăng kí thi tuyển sinh vào lớp 10. Số hồ sơ đăng kí trực tuyến nhiều hơn số hồ sơ đăng kí trực tiếp là 120 hồ sơ. Hỏi nhà trường đã nhận bao nhiêu hồ sơ đăng kí trực tuyến? Câu 2: Cho tam giác ABC nhọn có đường cao AD và H là trực tâm tam giác. Vẽ đường tròn tâm I đường kính BC, từ A kẻ các tiếp tuyến AM, AN với đường tròn I. Hãy chứng minh rằng tứ giác AMIN nội tiếp đường tròn. Câu 3: Cho parabol y = x^2 và hai điểm A(-3;9), B(2;4). Tìm điểm M có hoành độ thuộc khoảng (-3;2) trên đường cong parabol sao cho diện tích tam giác MAB lớn nhất. Đây chỉ là một phần nhỏ trong bộ đề thi Toán năm 2021 - 2022 của sở GD&ĐT Sơn La. Chúng tôi hy vọng đề thi này sẽ giúp các em học sinh ôn tập hiệu quả và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công!
Đề thi vào 10 chuyên môn Toán (không chuyên) năm 2021 2022 sở GD ĐT Cà Mau
Nội dung Đề thi vào 10 chuyên môn Toán (không chuyên) năm 2021 2022 sở GD ĐT Cà Mau Bản PDF Đề thi vào lớp 10 chuyên môn Toán (không chuyên) năm 2021-2022 của sở GD&ĐT Cà MauSytu xin gửi đến quý thầy cô và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (không chuyên) năm học 2021-2022 của sở GD&ĐT Cà Mau. Đề thi bao gồm đáp án và lời giải chi tiết. Dưới đây là một số câu hỏi trong đề thi:1. Anh Sơn và chị Hà đặt mục tiêu mỗi ngày phải đi bộ ít nhất 6000 bước. Nếu cùng đi trong 2 phút, anh Sơn bước nhiều hơn chị Hà 20 bước. Nếu chị Hà đi trong 5 phút thì lại nhiều hơn anh Sơn đi trong 3 phút là 160 bước. Hỏi mỗi ngày anh Sơn và chị Hà cùng đi bộ trong 1 giờ thì họ đã đạt được số bước tối thiểu của mục tiêu?2. Tìm giá trị của tham số m sao cho phương trình \(2x^2 - mx + 7 = 0\) có nghiệm. Tìm giá trị của m để phương trình đã cho có hai nghiệm âm phân biệt.3. Trong tam giác nhọn ABC có AB và AC đều tiếp xúc với đường tròn tâm O. Hai tiếp tuyến tại B và C cắt nhau tại M, tia AM cắt đường tròn tại D. Hãy chứng minh rằng tứ giác OBMC nội tiếp, và \(2MB \cdot MD = MA\). Gọi E là trung điểm của AD, tia CE cắt đường tròn tại F. Chứng minh rằng \(BF = AM\).Nếu quý thầy cô quan tâm và muốn xem đầy đủ nội dung của đề thi, vui lòng tải file Word tại đường link sau: [link](#).Mong rằng đề thi sẽ giúp các em học sinh ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc quý thầy cô và các em thành công!