Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Vẻ đẹp đánh giá phương trình và hệ phương trình

giới thiệu đến quý thầy, cô giáo và các em học sinh tài liệu Vẻ đẹp đánh giá phương trình và hệ phương trình được biên soạn bởi nhóm tác giả Chinh phục Olympic Toán: Nguyễn Minh Tuấn, Nguyễn Trường Phát và Nguyễn Mai Hoàng Anh, tài liệu gồm 271 trang đi sâu khai thác kỹ thuật đánh giá phương trình và hệ phương trình, đây là một phương pháp rất mạnh và hiệu quả để xử lý các bài toán phức tạp. Tài liệu tổng hợp, sáng tạo các bài toán hay và khó hơn nhằm đưa đến cho bạn đọc một cái nhìn, và hướng đi mới trong việc giải các bài toán phương trình vô tỷ. Tài liệu hướng đến 2 đối tượng là các bạn học sinh lớp 10 đang học phương trình, hệ phương trình và các bạn đang ôn thi học sinh giỏi nên sẽ có một số phần có sự trợ giúp của máy tính cầm tay để cho các bạn tham khảo. Phần 1 . Kỹ thuật đánh giá phương trình vô nghiệm. 1. Chứng minh phương trình bậc 4 vô nghiệm. 2. Chứng minh phương trình bậc 6 vô nghiệm. 3. Cách phân tích riêng cho hai dòng máy đặc biệt. 4. Chứng minh trên khoảng. 5. Phương pháp DAC chứng minh trên đoạn. 6. Các bài toán bất đẳng thức 1 biến. [ads] Phần 2 . Phương pháp hàm số đánh giá phương trình – hệ phương trình. Các kiến thức cần nhớ. 1. Các bài toán về phương trình. + Phương pháp hàm đặc trưng. + Phương pháp chứng minh hàm đơn điệu. 2. Các bài toán hệ phương trình. Phần 3 . Bất đẳng thức đánh giá phương trình – hệ phương trình. Các bất đẳng thúc cần nhớ. 1. Các bài toán về phương trình. + Đánh giá miền nghiệm. + Đánh giá theo cụm. + Kỹ thuật sử dụng bất đẳng thức cổ điển. 2. Các bài toán về hệ phương trình. Tài liệu tham khảo.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề phương trình Vô tỉ - Đặng Thành Nam
Tài liệu gồm 92 trang hướng dẫn giải chi tiết các bài toán phương trình vô tỉ thuộc nhiều dạng bài và độ khó khác nhau. Tài liệu được biên soạn bởi tác giả Đặng Thành Nam. Phương trình vô tỷ, cùng với hệ phương trình là một bài toán hay thường xuyên xuất hiện trong đề thi TSĐH. Bài tập dạng này rất phong phú và đa dạng, đòi hỏi học sinh phải vận dụng linh hoạt biến đổi cơ bản, đến đặt ẩn phụ hay, một số đánh giá nhỏ dựa vào bất đẳng thức, hàm số. Với đề thi TSĐH thì bài toán theo nhận định chủ quan thì 2 phương pháp cơ bản để các em làm được các bài toán dạng này là biến đổi cơ bản (quan trọng) và đặt ẩn phụ nếu có. Các phương pháp sẽ được trình bày theo từng dạng toán để các em có thể tiếp cận làm quen, về sau khi đã được tiếp cận từng phương pháp sẽ hình thành cho các em khả năng nhận dạng và tư duy phương pháp giải. [ads]
Tìm điều kiện để Phương trình - Hệ phương trình có nghiệm - Đặng Thành Nam
Tài liệu gồm 40 trang hướng dẫn giải các bài toán tìm điều kiện của tham số để phương trình – hệ phương trình có nghiệm, tài liệu do thầy Đặng Thành Nam biên soạn. Dạng toán tìm điều kiện của tham số để phương trình, hệ phương trình có nghiệm thường xuất hiện trong đề thi TSĐH dưới dạng áp dụng phương pháp xét tính đơn điệu của hàm số để tìm miền giá trị của hàm số, từ đó suy ra giá trị cần tìm của tham số m. Đây là loại bài toán không khó và chiếm một điểm trong đề thi, nên nhớ áp xét tính đơn điệu của hàm số. [ads]
Phương pháp Ép tích bằng ẩn phụ - Đoàn Trí Dũng
Phương pháp Ép tích trong thời gian qua đã khiến vô số các em học sinh, các thầy cô giáo và cả những người đam mê toán học đau đầu về phương pháp nhóm nhân tử đặc biệt này. Có rất nhiều thủ thuật Ép tích nhưng hôm nay, nhóm tác giả chúng tôi xin chia sẻ một phần của bí quyết đó. A. ÉP TÍCH BẰNG ĐẶT ẨN PHỤ HOÀN TOÀN I. Đặt vấn đề: Phương pháp ép tích bằng đặt ẩn phụ hoàn toàn là phương pháp dùng để nhóm các biểu thức chứa căn thành dạng tích thông qua việc giản ước các căn thức bằng cách đặt ẩn phụ. Trong mục này, chúng ta sẽ ưu tiên các phương pháp đặt ẩn phụ và biến đổi để rèn luyện tư duy ẩn phụ và biến đổi tương đương. [ads] II. Các phương pháp cơ bản của đặt ẩn phụ hoàn toàn ép tích: + Đặt một ẩn phụ kết hợp nhóm nhân tử + Đặt hai ẩn phụ kết hợp nhóm nhân tử + Đặt từ 3 ẩn phụ trở lên kết hợp nhóm nhân tử + Đặt một ẩn phụ đưa về hệ kết nối hai phương trình + Đặt hai ẩn phụ đưa về hệ kết nối hai phương trình B. ÉP TÍCH GIẢI PHƯƠNG TRÌNH BẰNG ẨN PHỤ KHÔNG HOÀN TOÀN Đây là một dạng phương pháp giải quyết các phương trình có dạng A.căn(B) = C bằng cách nhóm về nhân tử mà không cần quan tâm đến nghiệm của phương trình.
Giải phương trình bằng máy tính Casio - Tập 2 Chia đa thức nhiều căn
Tài liệu hướng dẫn sử dụng máy tính Casio chia đa thức nhiều căn, đưa về dạng nhân tử để giải phương trình vô tỷ. Những năm gần đây, với sự phát triển của máy tính Casio, các bài toán phương trình vô tỷ, bất phương trình, hệ phương trình đã được biến tấu rất nhiều nảy sinh các dạng toán khó và vô cùng đa dạng, phong phú, trong đó nổi hơn cả là phương pháp ép căn đưa về nhân tử. Với các kỹ thuật đã và đang có hiện nay, kỹ thuật ép một căn đã không còn quá xa lạ, tuy nhiên kỹ thuật chia đa thức chứa nhiều căn vẫn là một ẩn số, thách thức với không ít các bạn trẻ. Trong tác phẩm này, chúng tôi xin giới thiệu với các bạn đọc một tuyệt phẩm về chia đa thức chứa nhiều căn, hy vọng tác phẩm này sẽ giúp bạn đọc có được những cái nhìn mới sâu sắc về Casio và uy lực của nó. [ads] Nội dung tài liệu : Chủ đề 1. 2 nghiệm đơn hữu tỷ Chủ đề 2. Nghiệm vô tỷ Chủ đề 3. Nghiệm kép hữu tỷ thay vào căn hữu tỷ Chủ đề 4. Nghiệm kép hữu tỷ thay vào căn vô tỷ Chủ đề 5. 1 nghiệm đơn hữu tỷ thay vào căn vô tỷ Chủ đề 6. 1 nghiệm đơn hữu tỷ thay vào căn hữu tỷ