Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bàn về một cách tiếp cận khác cho bài toán tính góc giữa đường thẳng và mặt phẳng

Tài liệu gồm 07 trang, được biên soạn bởi Ths. Hoàng Minh Quân (giáo viên Toán trường THPT chuyên Nguyễn Huệ, Hà Nội), bàn về một cách tiếp cận khác cho bài toán tính góc giữa đường thẳng và mặt phẳng. Trong chương trình toán THPT, các bài toán về góc giữa đường thẳng và mặt phẳng tuy không mới. Song, nó vẫn mang tính thời sự trong các bài kiểm tra định kì, các kì thi học sinh giỏi, kì thi tốt nghiệp Trung học Phổ thông hằng năm. Bài viết sau đây khai thác một hướng tiếp cận khác cho bài toán tính góc giữa đường thẳng với mặt phẳng. 1. Kiến thức cơ bản 1.1. Định nghĩa: Cho đường thẳng a và mặt phẳng (a). Góc giữa đường thẳng a và hình chiếu a’ của nó trên mặt phẳng (a) được gọi là góc giữa đường thẳng a và mặt phẳng (a). 1.2. Các xác định góc giữa đường thẳng a và mặt phẳng (a). Cách 1: + Bước 1. Tìm O = a giao (a). + Bước 2. Lấy A thuộc a và dựng AH vuông góc (a) tại H . Khi đó (a;(a)) = (a;a’) = AOH. + Bước 3. Tính số đo của góc AOH. Chú ý: 0 =< (a;(a)) =< 90. Cách 2: Tính gián tiếp theo một trong hai hướng sau: + Hướng 1: Chọn một đường thẳng d // a mà góc giữa d và (a) có thể tính được. Từ đó ta có: (a;(a)) = (d;(a)). + Hướng 2: Chọn một mặt phẳng (b) // (a) mà góc giữa a và (b) có thể tính được. Từ đó ta có: (a;(a)) = (a;(b)). Tuy nhiên việc xác định hình chiếu của một điểm lên mặt phẳng không phải lúc nào cũng thuận lợi. Chính vì vậy, việc đưa ra một cách tiếp cận khác là sử dụng khoảng cách để tính góc giữa đường thẳng với mặt phẳng nhằm khắc phục khó khăn đó. 1.3. Định hướng tiếp cận: Cho đường thẳng a và mặt phẳng (a). Để tính góc x giữa đường thẳng a và mặt phẳng (a), ta tiếp cận thông qua ý tưởng đơn giản khác như sau: + Bước 1: Tìm O = a giao (a). + Bước 2: Tính sinx = d(A;(a))/OA. Cách tiếp cận này thích hợp cho học sinh nắm chắc việc tính khoảng cách từ một điểm đến một mặt phẳng. Sau đây chúng tôi đưa ra một số ví dụ minh hoạ với lời giải theo hướng tiếp cận sử dụng khoảng cách để tính góc giữa đường thẳng với mặt phẳng. 2. Ví dụ minh họa 2.1. Áp dụng cho các bài toán khối chóp. 2.2. Áp dụng cho các bài toán khối lăng trụ. 2.3. Bài tập tự luyện.

Nguồn: toanmath.com

Đọc Sách

Giải toán 12 khối đa diện và khối tròn xoay - Trần Đức Huyên
Cuốn sách Giải toán 12 khối đa diện và khối tròn xoay được biên soạn bám sát cấu trúc của sách giáo khoa Hình học 12, sách được biên soạn bởi các tác giả Trần Đức Huyên (chủ biên), Nguyễn Duy Hiếu, Phạm Thị Bé Hiền. Chương I . KHỐI ĐA DIỆN. THỂ TÍCH CỦA KHỐI ĐA DIỆN Bài 1. Khái niệm về khối đa diện. + Vấn đề 1. Chứng minh một số tính chất liên quan đến đỉnh, cạnh và mặt của một khối đa diện. + Vấn đề 2. Phân chia và lắp ghép các khối đa diện. Bài 2. Phép đối xứng qua mặt phẳng. Sự bằng nhau của các khối đa diện. + Vấn đề 1. Chứng minh hai hình bằng nhau. + Vấn đề 2. Chứng minh một phép biến hình là phép dời hình. Bài 3. Phép vị tự. Sự đồng dạng của các khối đa diện. Các khối đa diện đều. Bài 4. Thể tích của khối đa diện. [ads] Chương II . MẶT CẦU. MẶT TRỤ. MẶT NÓN Bài 1. Mặt cầu. Khối cầu. + Vấn đề 1. Xác định mặt cầu. + Vấn đề 2. Mặt cầu ngoại tiếp, nội tiếp hình chóp. + Vấn đề 3. Diện tích mặt cầu. Thể tích khối cầu. + Vấn đề 4. Tiếp tuyến của mặt cầu. Bài 2. Mặt trụ. Hình trụ. Khối trụ. + Vấn đề 1. Xác định mặt trụ. + Vấn đề 2. Diện tích xung quanh hình trụ. Thể tích khối trụ. + Vấn đề 3. Thiết diện của hình trụ cắt bởi một mặt phẳng. Bài 3. Mặt nón. Hình nón. Khối nón. + Vấn đề 1. Diện tích xung quanh. Diện tích toàn phần hình nón. Thể tích khối nón. + Vấn đề 2. Hình nón nội tiếp, ngoại tiếp hình chóp. Hình nón nội tiếp, ngoại tiếp mặt cầu. Bài 4. Tổ hợp hình cầu, hình trụ, hình nón.
Trắc nghiệm nâng cao khối đa diện - Đặng Việt Đông
Tài liệu gồm 125 trang được biên soạn bởi thầy Đặng Việt Đông tuyển tập các bài toán trắc nghiệm nâng cao khối đa diện có đáp án và lời giải chi tiết, nhằm giúp các em học sinh khối 12 luyện đạt điểm 8 – 9 – 10 trong kỳ thi THPT Quốc gia môn Toán, các bài toán được trích dẫn từ các đề thi thử môn Toán của các trường THPT và cơ sở GD & ĐT trên toàn quốc. Xem thêm : + Trắc nghiệm nâng cao nón – trụ – cầu – Đặng Việt Đông + Trắc nghiệm nâng cao hình học tọa độ Oxyz – Đặng Việt Đông
Kỹ thuật tư duy và giải toán trắc nghiệm hình học không gian - Hà Duy Nghĩa
Tài liệu sáng kiến kinh nghiệm được biên soạn bởi thầy Hà Duy Nghĩa gồm 20 trang, trình bày một số kỹ thuật tư duy và giải toán trắc nghiệm hình học không gian. Tài liệu trình bày các vấn đề : + Bài toán liên quan đến thể tích khối đa diện: Trình bày một số kỹ thuật tính thể tích thông qua việc phân chia các thể tích cũng như tính tỉ số thể tích trực tiếp, gián tiếp và những ưu khuyết điểm của nó. + Bài toán liên quan đến tâm, bán kính mặt cầu ngoại tiếp hình đa diện: Trình bày về vấn đề hay gặp là tìm bán kính mặt cầu ngoại tiếp khối chóp và lăng trụ còn về tâm mặt cầu thì chỉ đề cập. + Bài toán liên quan đến hình tròn xoay: Trình bày một số bài toán liên quan đến thể tích các vật thể tròn xoay trong thực tế, các dạng bài tập tương tự như các bài trong đề thi minh họa và đề thử nghiệm.
Tài liệu chuyên Toán THPT chuyên đề Hình học không gian
Cuốn sách Tài liệu chuyên Toán THPT chuyên đề Hình học không gian gồm 160 trang được biên soạn bởi các tác giả Trần Đức Huyên, Nguyễn Duy Hiếu (trường THPT chuyên Lê Hồng Phong – TP. HCM nhằm giúp các em học sinh khối 11 – 12 cải thiện và nâng cao kỹ năng giải toán Hình học không gian và hướng đến kỳ thi THPTQG. Nội dung sách : Phần 1. Lý thuyết và phương pháp giải toán Chương 1. Hình lăng trụ Chương 2. Hình hộp Chương 3. Hình chóp Chương 4. Hình cầu Chương 5. Hình trụ Chương 6. Hình nón Chương 7. Các bài toán về khoảng cách Chương 8. Các bài toán về góc Phần 2. Ứng dụng để giải các đề tuyển sinh đại học [ads] Xem thêm : + Tài liệu chuyên Toán – Hình học 11 + Giải toán 12 nguyên hàm – tích phân – Trần Đức Huyên (Tài liệu cùng tác giả)