Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp giải phương trình nghiệm nguyên

Tài liệu gồm 38 trang, hướng dẫn một số phương pháp giải phương trình nghiệm nguyên, đây là dạng toán thường xuất hiện trong các đề thi học sinh giỏi Toán bậc THCS. A. KIẾN THỨC CẦN NHỚ 1. Phương trình nghiệm nguyên là phương trình có nhiều ẩn số, tất cả các hệ số của phương trình đều là số nguyên. Các nghiệm cần tìm cũng là số nguyên. 2. Phương trình nghiệm nguyên không có công thức giải tổng quát, chỉ có cách giải của một số dạng. Trong chuyên đề này được giới thiệu qua một số ví dụ và bài tập cụ thể. 3. Cách giải phương trình nghiệm nguyên rất đa dạng, đòi hỏi học sinh phân tích, dự đoán, đối chiếu và tư duy sáng tạo, lôgic để tìm nghiệm. B. CÁC DẠNG BÀI TẬP Dạng 1: Phương pháp đưa về phương trình ước số. Dạng 2: Phương pháp sử dụng tính chất chia hết. Dạng 3: Phương pháp xét số dư từng vế. Dạng 4: Phương pháp đưa về dạng tổng. Dạng 5: Phương pháp sử dụng bất đẳng thức. Dạng 6: Phương pháp đánh giá. Dạng 7: Phương pháp giải lùi vô hạn, nguyên tắc cực hạn. C. BÀI TẬP TỰ LUYỆN

Nguồn: toanmath.com

Đọc Sách

Chuyên đề số chính phương
Nội dung Chuyên đề số chính phương Bản PDF - Nội dung bài viết Số chính phương - một khái niệm cơ bản trong toán học Số chính phương - một khái niệm cơ bản trong toán học Số chính phương là số mà có thể được biểu diễn dưới dạng bình phương của một số nguyên. Ví dụ, 0, 1, 4, 9, 16, ... là các số chính phương vì chúng có thể được viết dưới dạng bình phương của một số nguyên. Số chính phương là một khái niệm quan trọng trong toán học và được sử dụng trong nhiều lĩnh vực khác nhau như trong số học, lý thuyết số, đại số và hình học.
Lời giải bài toán bất đẳng thức, cực trị trong đề tuyển sinh môn Toán
Nội dung Lời giải bài toán bất đẳng thức, cực trị trong đề tuyển sinh môn Toán Bản PDF - Nội dung bài viết Giải bài toán bất đẳng thức, cực trị trong đề tuyển sinh môn Toán Giải bài toán bất đẳng thức, cực trị trong đề tuyển sinh môn Toán Bài toán bất đẳng thức và cực trị luôn là những thách thức lớn đối với học sinh khi tham gia vào kì thi tuyển sinh vào lớp 10 môn Toán. Đây là phần bài thi mang tính quyết định, giúp trường chọn lọc những học sinh giỏi và xuất sắc nhất để vào học tại các lớp chuyên Toán tại các trường THPT chuyên. Để giúp các em học sinh lớp 9 chuẩn bị cho kỳ thi tuyển sinh, Sytu đã tổng hợp tài liệu lời giải cho bài toán bất đẳng thức, cực trị trong đề thi tuyển sinh lớp 10 môn Toán. Tài liệu này được biên soạn bởi tác giả Trịnh Bình, chuyên gia giàu kinh nghiệm trong lĩnh vực giáo dục Toán học. Bên dưới là một số ví dụ về nội dung và cấu trúc của tài liệu lời giải: Ví dụ 1: Cho các số dương a, b, c thỏa mãn abc = a + b + c + 2. Hãy tìm giá trị lớn nhất của biểu thức P = 1/√(a^2 + b^2) + 1/√(b^2 + c^2) + 1/√(c^2 + a^2). Ví dụ 2: Giả sử x, y, z là các số thực trong đoạn [0;2] và x + y + z = 3. Hãy chứng minh rằng x^2 + y^2 + z^2 < 6 và tìm giá trị lớn nhất của biểu thức P = x^3 + y^3 + z^3 – 3xyz. Ví dụ 3: Cho x, y, z là các số thực dương thỏa mãn xy + yz + 4zx = 32. Tìm giá trị nhỏ nhất của biểu thức P = x^2 + 16y^2 + 16z^2. Với tài liệu lời giải bài toán bất đẳng thức, cực trị trong đề thi tuyển sinh môn Toán, các em học sinh sẽ được trang bị kiến thức và kỹ năng cần thiết để tự tin giải quyết các dạng bài tương tự trong kỳ thi sắp tới.
Ứng dụng của nguyên lý Dirichlet trong giải toán THCS
Nội dung Ứng dụng của nguyên lý Dirichlet trong giải toán THCS Bản PDF - Nội dung bài viết Ứng dụng của nguyên lý Dirichlet trong giải toán THCS Ứng dụng của nguyên lý Dirichlet trong giải toán THCS Tài liệu này là tập hợp 94 trang sách, chứa những ứng dụng cụ thể của nguyên lý Dirichlet trong việc giải các bài toán toán học cấp THCS. Nội dung tập sách bao gồm các bài toán về số học, tổ hợp, chứng minh bất đẳng thức, giúp bồi dưỡng và phát triển tư duy toán học cho học sinh giỏi. Chủ đề 1 của tài liệu tập trung vào các bài toán ứng dụng nguyên lý Dirichlet trong các lĩnh vực như tổ hợp, số học và hình học. Tài liệu cung cấp lý thuyết cơ bản về nguyên lý Dirichlet và các dạng mở rộng của nó. Cách áp dụng nguyên lý Dirichlet trong việc chứng minh kết quả toán học sâu sắc cũng được trình bày một cách dễ hiểu. Chủ đề 2 của tài liệu giới thiệu cách ứng dụng nguyên lý Dirichlet vào việc chứng minh các bất đẳng thức. Bằng cách sử dụng nguyên lý Dirichlet, chúng ta có thể chứng minh một số bài toán bất đẳng thức một cách gọn gàng và độc đáo. Một trong những mệnh đề quan trọng mà nguyên lý Dirichlet giúp chứng minh là điều kiện để tìm ra hai số cùng dấu trong 3 số thực bất kì. Tài liệu này không chỉ giúp học sinh hiểu rõ hơn về nguyên lý Dirichlet mà còn hướng dẫn cách áp dụng nó vào việc giải các bài toán thực tế, từ đó nâng cao khả năng giải quyết vấn đề của họ trong môn Toán cấp THCS.
Chuyên đề quan hệ chia hết trên tập hợp số
Nội dung Chuyên đề quan hệ chia hết trên tập hợp số Bản PDF - Nội dung bài viết Chuyên Đề Quan Hệ Chia Hết trên Tập Hợp Số Chuyên Đề Quan Hệ Chia Hết trên Tập Hợp Số Tài liệu "Chuyên đề quan hệ chia hết trên tập hợp số" gồm 56 trang được biên soạn bởi tác giả Trịnh Bình nhằm giới thiệu phương pháp giải và bài tập các dạng toán về quan hệ chia hết trên tập hợp số. Đây là tài liệu phù hợp cho học sinh lớp 6 muốn tìm hiểu sâu về chủ đề này và ôn thi học sinh giỏi môn Toán bậc Trung học Cơ sở. Trong tài liệu, các dạng toán quan trọng về quan hệ chia hết được đề cập bao gồm: Dạng Toán lớp 1: Chứng minh tích các số nguyên liên tiếp chia hết cho một số cho trước. Sử dụng tích chất cơ bản như tích hai số nguyên liên tiếp chia hết cho 2, tích của ba số nguyên liên tiếp chia hết cho 6. Dạng Toán lớp 2: Phân tích thành nhân tử để chứng minh chia hết cho một số. Sử dụng phương pháp tách tổng để chứng minh từng hạng tử chia hết cho số đó. Dạng Toán lớp 3: Sử dụng phương pháp phản chứng để chứng minh số không chia hết cho một số khác. Dạng Toán lớp 4-12: Sử dụng các phương pháp khác nhau như quy nạp, nguyên lý Dirichlet, đồng dư, định lý Fermat nhỏ để giải các bài toán quan hệ chia hết trên tập hợp số. Tài liệu này giúp học sinh nắm vững kiến thức cơ bản và phát triển kỹ năng giải toán một cách linh hoạt và logic. Qua việc thực hành các bài tập trong tài liệu, học sinh sẽ củng cố và nâng cao khả năng giải quyết vấn đề, từ đó tự tin hơn trong việc làm bài tập và thi cử.