Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tóm tắt lý thuyết, các dạng toán và bài tập môn Toán 9

Tài liệu gồm 666 trang, tóm tắt lý thuyết, các dạng toán và bài tập môn Toán 9, có đáp án và lời giải chi tiết. Phần I Đại số. Chương 1. Căn bậc hai – Căn bậc ba 2. 1. Căn bậc hai 2. 2. Căn thức bậc hai và hằng đẳng thức √A2 = |A| 9. 3. Liên hệ giữa phép nhân và phép khai phương 16. 4. Liên hệ giữa phép chia và phép khai phương 23. 5. Biến đỗi đơn giản biểu thức chứa căn thức bậc hai 32. 6. Rút gọn biểu thức chứa căn bậc hai 43. 7. Căn bậc ba 57. 8. Ôn tập chương 1 64. 9. Giới thiệu đề kiểm tra 1 tiết chương 1 97. Chương 2. Hàm số bậc nhất 105. 1. Khái niệm hàm số. Hàm số bậc nhất 105. 2. Đồ thị hàm số bậc nhất 117. 3. Đường thẳng song song và đường thẳng cắt nhau 129. 4. Hệ số góc của đường thẳng y = ax + b (a khác 0) 137. 5. Ôn tập chương 2 141. 6. Đề kiểm tra chương 2 171. Chương 3. Hệ hai phương trình bậc nhất hai ẩn 174. 1. Phương trình bậc nhất hai ẩn. Hệ hai phương trình bậc nhất hai ẩn 174. 2. Phương pháp giải hệ phương trình 180. 3. Giải bài toán bằng cách lập hệ phương trình 196. 4. Ôn tập chương 3 211. 5. Đề kiểm tra 1 tiết 236. Chương 4. Hàm số y = ax2 (a khác 0). Phương trình bậc hai một ẩn 240. 1. Hàm số và đồ thị hàm số y = ax2 (a khác 0) 240. 2. Phương trình bậc hai một ẩn và công thức nghiệm 249. 3. Hệ thức Vi-ét và ứng dụng 262. 4. Phương trình quy về phương trình bậc hai 275. 5. Giải toán bằng cách lập phương trình 310. 6. Ôn tập chương 4 326. 7. Đề kiểm tra 45 phút 344. Phần II Hình học. Chương 1. Hệ thức lượng trong tam giác vuông 349. 1. Hệ thức lượng và đường cao 349. 2. Tỷ số lượng giác của góc nhọn 363. 3. Hệ thức về cạnh và góc trong tam giác vuông 369. 4. Ôn tập chương 378. 5. Đề kiểm tra 45 phút 409. Chương 2. Đường tròn 427. 1. Sự xác định đường tròn. Tính chất đối xứng của đường tròn 427. 2. Đường kính và dây của đường tròn 439. 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây 448. 4. Vị trí tương đối của đường thẳng và đường tròn 456. 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn 462. 6. Tính chất của hai tiếp tuyến cắt nhau 470. 7. Vị trí tương đối của hai đường tròn 481. 8. Ôn tập chương 2 494. Chương 3. Góc với đường tròn 515. 1. Góc ở tâm. Số đo cung 515. 2. Liên hệ giữa cung và dây 520. 3. Góc nội tiếp 526. 4. Góc tạo bởi tia tiếp tuyến và dây cung 534. 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn 548. 6. Cung chứa góc 558. 7. Tứ giác nội tiếp 568. 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp 581. 9. Độ dài đường tròn, cung tròn 588. 10. Ôn tập chương III 595. Chương 4. Hình trụ – Hình nón – Hình cầu 620. 1. Hình trụ. Diện tích xung quanh và thể tích hình trụ 620. 2. Hình nón – Hình nón cụt – Diện tích xung quanh và thể tích của hình nón, hình nón cụt 627. 3. Hình cầu – Diện tích mặt cầu và thể tích hình cầu 634. 4. Ôn tập chương IV 640.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hàm số $y ax2$ $left( a ne 0 right)$
Tài liệu gồm 33 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề hàm số $y = a{x^2}$ $\left( {a \ne 0} \right)$, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 4 bài số 1. A. KIẾN THỨC TRỌNG TÂM 1. Tập xác định của hàm số. 2. Tính chất biến thiên của hàm số. 3. Đồ thị của hàm số. B. CÁC DẠNG BÀI TOÁN MINH HỌA Dạng toán 1. Xác định hàm số bậc hai. Dạng toán 2. Điểm thuộc đồ thị hàm số, vẽ đồ thị hàm số. Dạng toán 3. Sự đồng biến và nghịch biến của đồ thị hàm số. Dạng toán 4. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số. Dạng toán 5. Viết phương trình parabol y = ax^2 (a khác 0) (tìm hệ số a). Dạng toán 6. Tương giao giữa parabol với đường thẳng. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU BÀI TỰ LUYỆN
Chuyên đề giải toán bằng cách lập hệ phương trình
Tài liệu gồm 84 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề giải toán bằng cách lập hệ phương trình, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 3 bài số 5 – 6. A. KIẾN THỨC TRỌNG TÂM Bước 1: Lập hệ phương trình: + Chọn ẩn, đơn vị cho ẩn và đặt điều kiện thích hợp cho chúng. + Biểu diễn các đại lượng chưa biết trong bài toán theo ẩn (chú ý đơn vị). + Dựa vào các dữ kiện, điều kiện của bài toán để lập hệ phương trình. Bước 2: Giải hệ phương trình. Bước 3: Nhận định, so sánh kết quả nghiệm của hệ phương trình với điều kiện bài toán. Kết luận, trả lời, nêu rõ đơn vị của đáp số. B. CÁC DẠNG TOÁN Dạng 1. Bài toán chuyển động. + Dạng chuyển động ngược chiều. + Dạng chuyển động cùng chiều. + Dạng chuyển động cùng chiều và ngược chiều. + Dạng toán thay đổi vận tốc trên đường đi. Dạng 2. Bài toán liên quan đến số học. + Dạng số có hai chữ số. + Dạng tỷ số, tuổi tác. Dạng 3. Bài toán về dân số, lãi suất ngân hàng, tăng trưởng. Dạng 4. Bài toán về công việc làm chung, làm riêng; vòi nước chảy chung chảy riêng. + Dạng vòi nước. + Dạng cùng làm chung công việc. Dạng 5. Bài toán có liên quan đến nội dung hình học. Dạng 6. Bài toán có liên quan đến nội dung vật lý, hoá học. Dạng 7. Bài toán khác. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU TỰ LUYỆN TỔNG HỢP CHUNG Dạng 1: Dạng toán tìm số. Dạng 2: Tìm toán chuyển động. Dạng 3: Dạng toán công việc làm chung làm riêng, vòi nước. Dạng 4: Dạng toán tỉ lệ phần trăm (%), năng xuất. Dang 5: Dạng toán sử dụng các kiến thức vật lý, hóa học.
Chuyên đề giải hệ phương trình bậc nhất hai ẩn
Tài liệu gồm 41 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề giải hệ phương trình bậc nhất hai ẩn, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 3 bài số 3 – 4. A. KIẾN THỨC TRỌNG TÂM a. Phương pháp thế. + Bước 1: Từ một phương trình của hệ, ta biểu thị ẩn x theo y (hoặc y theo x). + Bước 2: Thế biểu thức tìm được của x (hoặc của y) vào phương trình còn lại để được phương trình bậc nhất một ẩn. Giải phương trình bậc nhất vừa tìm được. + Bước 3: Thay giá trị vừa tìm được của ẩn vào biểu thức tìm được trong bước thứ nhất để tìm giá trị của ẩn còn lại. b. Phương pháp cộng đại số. + Bước 1: Chọn ẩn muốn khử, thường là x (hoặc y). + Bước 2: + + Xem xét hệ số của ẩn muốn khử. + + Khi các hệ số của cùng một ẩn đối nhau thì ta cộng vế theo vế của hệ. + + Khi các hệ số của cùng một ẩn bằng nhau thì ta trừ về theo vế của hệ. + + Nếu các hệ số đó không bằng nhau thì ta nhân các vế của hai phương trình với số thích hợp (nếu cần) sao cho các hệ số của x (hoặc y) trong hai phương trình của hệ là bằng nhau hoặc đối nhau (đồng nhất hệ số). Rồi thực hiện các bước ở trên. + + Ta được một phương trình mới, trong đó ẩn muốn khử có hệ số bằng 0. + Bước 3: Giải hệ phương trình gồm một phương trình mới (một ẩn) và một phương trình đã cho. B. CÁC DẠNG TOÁN Dạng 1. Giải hệ phương trình bằng phương pháp thế. Dạng 2. Giải hệ phương trình bằng phương pháp cộng đại số. Dạng 3. Sử dụng phương pháp đặt ẩn phụ. Dạng 4. Một số bài toán liên quan. C. BÀI TẬP TỰ LUYỆN
Chuyên đề hệ hai phương trình bậc nhất hai ẩn
Tài liệu gồm 38 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề hệ hai phương trình bậc nhất hai ẩn, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 3 bài số 2. A. KIẾN THỨC TRỌNG TÂM 1. Hệ hai phương trình bậc nhất hai ẩn. 2. Minh họa hình học tập nghiệm của hệ hai phương trình bậc nhất hai ẩn. 3. Hệ phương trình tương đương. B. CÁC DẠNG BÀI MINH HỌA Dạng 1: Đoán nhận số nghiệm của hệ phương trình. Dạng 2: Giải hệ phương trình bằng phương pháp hình học. Dạng 3: Hai hệ phương trình tương đương. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. BÀI TẬP TỰ LUYỆN