Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hướng dẫn giải bài toán cực trị số phức - Lương Đức Trọng

Tài liệu gồm 12 trang được biên soạn bởi tác giả Lương Đức Trọng trình bày 2 phương pháp giải bài toán cực trị số phức – một dạng toán số phức vận dụng cao trong chương trình Giải tích 12 chương 4. Hai phương pháp được nói đến trong tài liệu đó là: + Phương pháp đại số. + Phương pháp hình học. Đây là lớp các bài toán vận dụng cao trong đề thi THPT Quốc gia môn Toán, để giải được dạng toán này, cần nắm vững các lý thuyết sau đây: Bất đẳng thức tam giác: + |z1 + z2| ≤ |z1| + |z2|, dấu “=” khi z1 = kz2 với k ≥ 0 + |z1 − z2| ≤ |z1| + |z2|, dấu “=” khi z1 = kz2 với k ≤ 0 + |z1 + z2| ≥ ||z1| − |z2||, dấu “=” khi z1 = kz2 với k ≤ 0 + |z1 − z2| ≥ ||z1| − |z2||, dấu “=” khi z1 = kz2 với k ≥ 0 [ads] 2. Công thức trung tuyến: |z1 + z2|^2 + |z1 − z2|^2 = 2(|z1|^2 + |z2|^2) 3. Tập hợp điểm: + |z − (a + bi)| = r: Đường tròn tâm I(a; b) bán kính r + |z − (a1 + b1i)| = |z − (a2 + b2i)|: Đường trung trực của AB với A(a1; b1), B(a2; b2) + |z − (a1 + b1i)| + |z − (a2 + b2i)| = 2a: – Đoạn thẳng AB với A(a1; b1), B(a2; b2) nếu 2a = AB – Elip (E) nhận A, B làm hai tiêu điểm với độ dài trục lớn là 2a nếu 2a > AB Đặc biệt |z + c| + |z − c| = 2a: Elip (E) : x^2/a^2 + y^2/b^2 = 1 với b = √(a^2 − c^2)

Nguồn: toanmath.com

Đọc Sách

Chuyên đề Số phức - Trung tâm LTĐH Vĩnh Viễn
Tài liệu chuyên đề số phức được biên soạn bởi quý thầy, cô giáo trung tâm luyện thi đại học Vĩnh Viễn, thành phố Hồ Chí Minh gồm 7 trang bao gồm lý thuyết số phức và các bài toán số phức được trích từ các đề tuyển sinh Cao đẳng – Đại học có lời giải chi tiết. Nội dung tài liệu gồm 2 phần: Phần A . Lý thuyết số phức cần nắm vững: Gồm các nội dung: 1. Định nghĩa số phức. 2. Môđun của số phức. 3. Biểu diễn hình học của số phức trên mặt phẳng tọa độ Oxy. 4. Dạng lượng giác của số phức. 5. Các phép toán về số phức. 6. Lũy thừa số phức. 7. Căn bậc n của số phức. Phần B . Bài tập: Trích dẫn 22 bài toán số phức trong đề thi THPT môn Toán, đề tuyển sinh Cao đẳng – Đại học môn Toán các năm trước (từ năm 2009 đến năm 2011), các bài toán đều có lời giải chi tiết. Tài liệu giúp quý thầy, cô tham khảo và giúp các em học sinh khối 12 học tốt chủ đề số phức thuộc chương trình Giải tích 12 chương 4. [ads]
Chuyên đề trắc nghiệm cực trị số phức
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề cực trị số phức, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 4. + Dạng 1: Cho số phức z thỏa mãn zz zz 1 2. Tìm số phức thỏa mãn z z 0 nhỏ nhất. + Dạng 2: Cho số phức z thỏa mãn zz R 0. Tìm số phức thỏa mãn P zz 1 đạt giá trị lớn nhất, nhỏ nhất. + Dạng 3: Cho số phức z thỏa mãn zz zz 1 2. Tìm số phức thỏa mãn P zz zz 3 4 đạt giá trị nhỏ nhất. + Dạng 4: Cho số phức z thỏa mãn zz zz 1 2. Tìm số phức thỏa mãn 2 2 P zz zz 3 4 đạt giá trị nhỏ nhất. + Dạng 5: Cho số phức z thỏa mãn 0 zz R. Tìm số phức thỏa mãn 2 2 P zz zz 1 2 đạt giá trị lớn nhất, nhỏ nhất. + Dạng 6: Cho hai số phức 1 2 z z thỏa mãn 1 0 zz R và z z 21 22 w w trong đó z0 1 2 w w là các số phức đã biết. Tìm giá trị nhỏ nhất của biểu thức 1 2 P z z. + Dạng 7: Cho hai số phức 1 2 z z thỏa mãn 11 1 zw R và z R 21 2 w trong đó w w1 2 là các số phức đã biết. Tìm giá trị lớn nhất, nhỏ nhất của biểu thức Pzz 1 2. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm biểu diễn hình học của số phức
Tài liệu gồm 24 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề biểu diễn hình học của số phức, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 4. 1. Định nghĩa. 2. Phương pháp giải toán. + Bài toán 1: Tìm tập hợp điểm biểu diễn số phức z thỏa mãn f zz g zz hoặc f zz là số thực hoặc f zz là số ảo. + Bài toán 2: Tìm tập hợp điểm biểu diễn số phức w biết 1 2 w zz z và số phức z thỏa mãn z a bi R. 3. Các ví dụ minh họa. BÀI TẬP TỰ LUYỆN. LỜI GIẢI CHI TIẾT.
Chuyên đề trắc nghiệm phương trình phức
Tài liệu gồm 19 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề phương trình phức, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 4. 1. Căn bậc hai của số phức. 2. Phương trình phức. 3. Tìm căn bậc hai của số phức z a bi a b. BÀI TẬP TỰ LUYỆN. LỜI GIẢI CHI TIẾT.